We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we'll assume that you are happy to receive all cookies on the medicines.ie website. Find out more

Bristol-Myers Squibb Pharmaceutical Limited

Watery Lane, Swords, Co. Dublin,
Telephone: 1 800 749 749
Medical Information Direct Line: Freephone: 1 800 749 749
Medical Information e-mail: Medical.information@bms.com


Summary of Product Characteristics last updated on medicines.ie: 14/11/2017
SPC OPDIVO 10 mg/mL concentrate for solution for infusion

 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

Go to top of the page
1. NAME OF THE MEDICINAL PRODUCT

OPDIVO 10 mg/mL concentrate for solution for infusion.


Go to top of the page
2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each mL of concentrate contains 10 mg of nivolumab.

One vial of 4 mL contains 40 mg of nivolumab.

One vial of 10 mL contains 100 mg of nivolumab.

Nivolumab is produced in Chinese hamster ovary cells by recombinant DNA technology.

Excipient with known effect

Each mL of concentrate contains 0.1 mmol (or 2.5 mg) sodium.

For the full list of excipients, see section 6.1.


Go to top of the page
3. PHARMACEUTICAL FORM

Concentrate for solution for infusion (sterile concentrate).

Clear to opalescent, colourless to pale yellow liquid that may contain few light particles. The solution has a pH of approximately 6.0 and an osmolality of approximately 340 mOsm/kg.


Go to top of the page
4. CLINICAL PARTICULARS

Go to top of the page
4.1 Therapeutic indications

Melanoma

OPDIVO as monotherapy or in combination with ipilimumab is indicated for the treatment of advanced (unresectable or metastatic) melanoma in adults.

Relative to nivolumab monotherapy, an increase in progression-free survival (PFS) and overall survival (OS) for the combination of nivolumab with ipilimumab is established only in patients with low tumour PD-L1 expression (see sections 4.4 and 5.1).

Non-Small Cell Lung Cancer (NSCLC)

OPDIVO as monotherapy is indicated for the treatment of locally advanced or metastatic non-small cell lung cancer after prior chemotherapy in adults.

Renal Cell Carcinoma (RCC)

OPDIVO as monotherapy is indicated for the treatment of advanced renal cell carcinoma after prior therapy in adults.

Classical Hodgkin Lymphoma (cHL)

OPDIVO as monotherapy is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma after autologous stem cell transplant (ASCT) and treatment with brentuximab vedotin.

Squamous Cell Cancer of the Head and Neck (SCCHN)

OPDIVO as monotherapy is indicated for the treatment of squamous cell cancer of the head and neck in adults progressing on or after platinum-based therapy (see section 5.1).

Urothelial Carcinoma

OPDIVO as monotherapy is indicated for the treatment of locally advanced unresectable or metastatic urothelial carcinoma in adults after failure of prior platinum-containing therapy.


Go to top of the page
4.2 Posology and method of administration

Treatment must be initiated and supervised by physicians experienced in the treatment of cancer.

Posology

OPDIVO as monotherapy

The recommended dose of OPDIVO is 3 mg/kg nivolumab administered intravenously over 60 minutes every 2 weeks.

OPDIVO in combination with ipilimumab

The recommended dose is 1 mg/kg nivolumab administered as an intravenous infusion over 60 minutes every 3 weeks for the first 4 doses in combination with 3 mg/kg ipilimumab administered intravenously over 90 minutes.

This is then followed by a second phase in which 3 mg/kg nivolumab is administered as an intravenous infusion over 60 minutes every 2 weeks. The first dose of nivolumab monotherapy should be administered 3 weeks following the last dose of the combination of nivolumab and ipilimumab.

Treatment with OPDIVO, either as a monotherapy or in combination with ipilimumab, should be continued as long as clinical benefit is observed or until treatment is no longer tolerated by the patient.

Atypical responses (i.e., an initial transient increase in tumour size or small new lesions within the first few months followed by tumour shrinkage) have been observed. It is recommended to continue treatment with nivolumab for clinically stable patients with initial evidence of disease progression until disease progression is confirmed.

Dose escalation or reduction is not recommended. Dosing delay or discontinuation may be required based on individual safety and tolerability. Guidelines for permanent discontinuation or withholding of doses are described in Table 1. Detailed guidelines for the management of immune-related adverse reactions are described in section 4.4.

Table 1: Recommended treatment modifications for OPDIVO or OPDIVO in combination with ipilimumab

Immune-related adverse reaction

Severity

Treatment modification

Immune-related pneumonitis

Grade 2 pneumonitis

Withhold dose(s) until symptoms resolve, radiographic abnormalities improve, and management with corticosteroids is complete

Grade 3 or 4 pneumonitis

Permanently discontinue treatment

Immune-related colitis

Grade 2 diarrhoea or colitis

Withhold dose(s) until symptoms resolve and management with corticosteroids, if needed, is complete

Grade 3 diarrhoea or colitis

- OPDIVO monotherapy

Withhold dose(s) until symptoms resolve and management with corticosteroids is complete

- OPDIVO+ipilimumab

Permanently discontinue treatment

Grade 4 diarrhoea or colitis

Permanently discontinue treatment

Immune-related hepatitis

Grade 2 elevation in aspartate aminotransferase (AST), alanine aminotransferase (ALT), or total bilirubin

Withhold dose(s) until laboratory values return to baseline and management with corticosteroids, if needed, is complete

Grade 3 or 4 elevation in AST, ALT, or total bilirubin

Permanently discontinue treatment

Immune-related nephritis and renal dysfunction

Grade 2 or 3 creatinine elevation

Withhold dose(s) until creatinine returns to baseline and management with corticosteroids is complete

Grade 4 creatinine elevation

Permanently discontinue treatment

Immune-related endocrinopathies

Symptomatic Grade 2 or 3 hypothyroidism, hyperthyroidism, hypophysitis,

Grade 2 adrenal insufficiency

Grade 3 diabetes

Withhold dose(s) until symptoms resolve and management with corticosteroids (if needed for symptoms of acute inflammation) is complete. Treatment should be continued in the presence of hormone replacement therapya as long as no symptoms are present

Grade 4 hypothyroidism

Grade 4 hyperthyroidism

Grade 4 hypophysitis

Grade 3 or 4 adrenal insufficiency

Grade 4 diabetes

Permanently discontinue treatment

Immune-related skin adverse reactions

Grade 3 rash

Withhold dose(s) until symptoms resolve and management with corticosteroids is complete

Grade 4 rash

Permanently discontinue treatment

Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN)

Permanently discontinue treatment (see section 4.4)

Other immune-related adverse reactions

Grade 3 (first occurrence)

Withhold dose(s)

Grade 3 myocarditis

Permanently discontinue treatment

Grade 4 or recurrent Grade 3 ; persistent Grade 2 or 3 despite treatment modification ; inability to reduce corticosteroid dose to 10 mg prednisone or equivalent per day

Permanently discontinue treatment

Note: Toxicity grades are in accordance with National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.0 (NCI-CTCAE v4).

a Recommendation for the use of hormone replacement therapy is provided in section 4.4.

OPDIVO or OPDIVO in combination with ipilimumab should be permanently discontinued for:

• Grade 4 or recurrent Grade 3 adverse reactions;

• Persistent Grade 2 or 3 adverse reactions despite management.

Patients treated with OPDIVO must be given the patient alert card and be informed about the risks of OPDIVO (see also package leaflet).

When OPDIVO is administered in combination with ipilimumab, if either agent is withheld, the other agent should also be withheld. If dosing is resumed after a delay, either the combination treatment or OPDIVO monotherapy could be resumed based on the evaluation of the individual patient.

Special populations

Paediatric population

The safety and efficacy of OPDIVO in children below 18 years of age have not been established. No data are available.

Elderly

No dose adjustment is required for elderly patients (≥ 65 years) (see sections 5.1 and 5.2).

Data from NSCLC and SCCHN patients 75 years of age or older are too limited to draw conclusions on this population.

Renal impairment

Based on the population pharmacokinetic (PK) results, no dose adjustment is required in patients with mild or moderate renal impairment (see section 5.2). Data from patients with severe renal impairment are too limited to draw conclusions on this population.

Hepatic impairment

Based on the population PK results, no dose adjustment is required in patients with mild hepatic impairment (see section 5.2). Data from patients with moderate or severe hepatic impairment are too limited to draw conclusions on these populations. OPDIVO must be administered with caution in patients with moderate (total bilirubin > 1.5 × to 3 × the upper limit of normal [ULN] and any AST) or severe (total bilirubin > 3 × ULN and any AST) hepatic impairment.

Method of administration

OPDIVO is for intravenous use only. It is to be administered as an intravenous infusion over a period of 60 minutes. The infusion must be administered through a sterile, non-pyrogenic, low protein binding in-line filter with a pore size of 0.2-1.2 μm.

OPDIVO must not be administered as an intravenous push or bolus injection.

The total dose of OPDIVO required can be infused directly as a 10 mg/mL solution or can be diluted to as low as 1 mg/mL with sodium chloride 9 mg/mL (0.9%) solution for injection or glucose 50 mg/mL (5%) solution for injection.

When administered in combination with ipilimumab, OPDIVO should be given first followed by ipilimumab on the same day. Use separate infusion bags and filters for each infusion.

For instructions on the handling of the medicinal product before administration, see section 6.6.


Go to top of the page
4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.


Go to top of the page
4.4 Special warnings and precautions for use

When nivolumab is administered in combination with ipilimumab, refer to the Summary of Product Characteristics for ipilimumab prior to initiation of treatment. Immune-related adverse reactions have occurred at higher frequencies when nivolumab was administered in combination with ipilimumab compared with nivolumab as monotherapy. Most immune-related adverse reactions improved or resolved with appropriate management, including initiation of corticosteroids and treatment modifications (see section 4.2).

Cardiac adverse events and pulmonary embolism have also been reported with combination therapy. Patients should be monitored for cardiac and pulmonary adverse reactions continuously, as well as for clinical signs, symptoms, and laboratory abnormalities indicative of electrolyte disturbances and dehydration prior to and periodically during treatment. Nivolumab in combination with ipilimumab should be discontinued for life-threatening or recurrent severe cardiac and pulmonary adverse reactions.

Patients should be monitored continuously (at least up to 5 months after the last dose) as an adverse reaction with nivolumab or nivolumab in combination with ipilimumab may occur at any time during or after discontinuation of therapy.

For suspected immune-related adverse reactions, adequate evaluation should be performed to confirm aetiology or exclude other causes. Based on the severity of the adverse reaction, nivolumab or nivolumab in combination with ipilimumab should be withheld and corticosteroids administered. If immunosuppression with corticosteroids is used to treat an adverse reaction, a taper of at least 1 month duration should be initiated upon improvement. Rapid tapering may lead to worsening or recurrence of the adverse reaction. Non-corticosteroid immunosuppressive therapy should be added if there is worsening or no improvement despite corticosteroid use.

Nivolumab or nivolumab in combination with ipilimumab should not be resumed while the patient is receiving immunosuppressive doses of corticosteroids or other immunosuppressive therapy. Prophylactic antibiotics should be used to prevent opportunistic infections in patients receiving immunosuppressive therapy.

Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for any severe immune-related adverse reaction that recurs and for any life-threatening immune-related adverse reaction.

Immune-related pneumonitis

Severe pneumonitis or interstitial lung disease, including fatal cases, has been observed with nivolumab monotherapy or nivolumab in combination with ipilimumab (see section 4.8). Patients should be monitored for signs and symptoms of pneumonitis such as radiographic changes (e.g., focal ground glass opacities, patchy filtrates), dyspnoea, and hypoxia. Infectious and disease-related aetiologies should be ruled out.

For Grade 3 or 4 pneumonitis, nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued, and corticosteroids should be initiated at a dose of 2 to 4 mg/kg/day methylprednisolone equivalents.

For Grade 2 (symptomatic) pneumonitis, nivolumab or nivolumab in combination with ipilimumab should be withheld and corticosteroids initiated at a dose of 1 mg/kg/day methylprednisolone equivalents. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper. If worsening or no improvement occurs despite initiation of corticosteroids, corticosteroid dose should be increased to 2 to 4 mg/kg/day methylprednisolone equivalents and nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued.

Immune-related colitis

Severe diarrhoea or colitis has been observed with nivolumab monotherapy or nivolumab in combination with ipilimumab (see section 4.8). Patients should be monitored for diarrhoea and additional symptoms of colitis, such as abdominal pain and mucus or blood in stool. Infectious and disease-related aetiologies should be ruled out.

For Grade 4 diarrhoea or colitis, nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued, and corticosteroids should be initiated at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents.

Nivolumab monotherapy should be withheld for Grade 3 diarrhoea or colitis, and corticosteroids initiated at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents. Upon improvement, nivolumab monotherapy may be resumed after corticosteroid taper. If worsening or no improvement occurs despite initiation of corticosteroids, nivolumab monotherapy must be permanently discontinued. Grade 3 diarrhoea or colitis observed with nivolumab in combination with ipilimumab requires permanent discontinuation of treatment and initiation of corticosteroids at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents.

For Grade 2 diarrhoea or colitis, nivolumab or nivolumab in combination with ipilimumab should be withheld. Persistent diarrhoea or colitis should be managed with corticosteroids at a dose of 0.5 to 1 mg/kg/day methylprednisolone equivalents. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper, if needed. If worsening or no improvement occurs despite initiation of corticosteroids, corticosteroid dose should be increased to 1 to 2 mg/kg/day methylprednisolone equivalents and nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued.

Immune-related hepatitis

Severe hepatitis has been observed with nivolumab monotherapy or nivolumab in combination with ipilimumab (see section 4.8). Patients should be monitored for signs and symptoms of hepatitis such as transaminase and total bilirubin elevations. Infectious and disease-related aetiologies should be ruled out.

For Grade 3 or 4 transaminase or total bilirubin elevation, nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued, and corticosteroids should be initiated at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents.

For Grade 2 transaminase or total bilirubin elevation, nivolumab or nivolumab in combination with ipilimumab should be withheld. Persistent elevations in these laboratory values should be managed with corticosteroids at a dose of 0.5 to 1 mg/kg/day methylprednisolone equivalents. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper, if needed. If worsening or no improvement occurs despite initiation of corticosteroids, corticosteroid dose should be increased to 1 to 2 mg/kg/day methylprednisolone equivalents and nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued.

Immune-related nephritis and renal dysfunction

Severe nephritis and renal dysfunction have been observed with monotherapy treatment or nivolumab in combination with ipilimumab (see section 4.8). Patients should be monitored for signs and symptoms of nephritis or renal dysfunction. Most patients present with asymptomatic increases in serum creatinine. Disease-related aetiologies should be ruled out.

For Grade 4 serum creatinine elevation, nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued, and corticosteroids should be initiated at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents.

For Grade 2 or 3 serum creatinine elevation, nivolumab or nivolumab in combination with ipilimumab should be withheld, and corticosteroids should be initiated at a dose of 0.5 to 1 mg/kg/day methylprednisolone equivalents. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper. If worsening or no improvement occurs despite initiation of corticosteroids, corticosteroid dose should be increased to 1 to 2 mg/kg/day methylprednisolone equivalents, and nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued.

Immune-related endocrinopathies

Severe endocrinopathies, including hypothyroidism, hyperthyroidism, adrenal insufficiency (including secondary adrenocortical insufficiency), hypophysitis (including hypopituitarism), diabetes mellitus, and diabetic ketoacidosis have been observed with nivolumab monotherapy or nivolumab in combination with ipilimumab (see section 4.8).

Patients should be monitored for clinical signs and symptoms of endocrinopathies and for hyperglycaemia and changes in thyroid function (at the start of treatment, periodically during treatment, and as indicated based on clinical evaluation). Patients may present with fatigue, headache, mental status changes, abdominal pain, unusual bowel habits, and hypotension, or nonspecific symptoms which may resemble other causes such as brain metastasis or underlying disease. Unless an alternate aetiology has been identified, signs or symptoms of endocrinopathies should be considered immune-related.

For symptomatic hypothyroidism, nivolumab or nivolumab in combination with ipilimumab should be withheld, and thyroid hormone replacement should be initiated as needed. For symptomatic hyperthyroidism, nivolumab or nivolumab in combination with ipilimumab should be withheld and antithyroid medication should be initiated as needed. Corticosteroids at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents should also be considered if acute inflammation of the thyroid is suspected. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper, if needed. Monitoring of thyroid function should continue to ensure appropriate hormone replacement is utilised. Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for life-threatening hyperthyroidism or hypothyroidism.

For symptomatic Grade 2 adrenal insufficiency, nivolumab or nivolumab in combination with ipilimumab should be withheld, and physiologic corticosteroid replacement should be initiated as needed. Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for severe (Grade 3) or life-threatening (Grade 4) adrenal insufficiency. Monitoring of adrenal function and hormone levels should continue to ensure appropriate corticosteroid replacement is utilised.

For symptomatic Grade 2 or 3 hypophysitis, nivolumab or nivolumab in combination with ipilimumab should be withheld, and hormone replacement should be initiated as needed. Corticosteroids at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents should also be considered if acute inflammation of the pituitary gland is suspected. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper, if needed. Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for life-threatening (Grade 4) hypophysitis. Monitoring of pituitary function and hormone levels should continue to ensure appropriate hormone replacement is utilised.

For symptomatic diabetes, nivolumab or nivolumab in combination with ipilimumab should be withheld, and insulin replacement should be initiated as needed. Monitoring of blood sugar should continue to ensure appropriate insulin replacement is utilised. Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for life-threatening diabetes.

Immune-related skin adverse reactions

Severe rash has been observed with nivolumab in combination with ipilimumab and, less commonly, with nivolumab as monotherapy (see section 4.8). Nivolumab or nivolumab in combination with ipilimumab should be withheld for Grade 3 rash and discontinued for Grade 4 rash. Severe rash should be managed with high-dose corticosteroid at a dose of 1 to 2 mg/kg/day methylprednisolone equivalents.

Rare cases of SJS and TEN some of them with fatal outcome have been observed. If symptoms or signs of SJS or TEN appear, treatment with nivolumab or nivolumab in combination with ipilimumab should be discontinued and the patient referred to a specialised unit for assessment and treatment. If the patient has developed SJS or TEN with the use of nivolumab or nivolumab in combination with ipilimumab, permanent discontinuation of treatment is recommended (see section 4.2).

Caution should be used when considering the use of nivolumab in a patient who has previously experienced a severe or life-threatening skin adverse reaction on prior treatment with other immune-stimulatory anticancer agents.

Other immune-related adverse reactions

The following immune-related adverse reactions were reported in less than 1% of patients treated with nivolumab monotherapy or nivolumab in combination with ipilimumab in clinical trials across doses and tumour types: pancreatitis, uveitis, demyelination, autoimmune neuropathy (including facial and abducens nerve paresis), Guillain-Barré syndrome, myasthenic syndrome, encephalitis, gastritis, sarcoidosis, duodenitis, myositis, myocarditis, and rhabdomyolysis. Cases of Vogt-Koyanagi-Harada syndrome have been reported post-marketing (see section 4.8).

For suspected immune-related adverse reactions, adequate evaluation should be performed to confirm aetiology or exclude other causes. Based on the severity of the adverse reaction, nivolumab or nivolumab in combination with ipilimumab should be withheld and corticosteroids administered. Upon improvement, nivolumab or nivolumab in combination with ipilimumab may be resumed after corticosteroid taper. Nivolumab or nivolumab in combination with ipilimumab must be permanently discontinued for any severe immune-related adverse reaction that recurs and for any life-threatening immune-related adverse reaction.

Rare cases of myotoxicity (myositis, myocarditis, and rhabdomyolysis), some with fatal outcome, have been reported with nivolumab or nivolumab in combination with ipilimumab. If a patient develops signs and symptoms of myotoxicity, close monitoring should be implemented, and the patient referred to a specialist for assessment and treatment without delay. Based on the severity of myotoxicity, nivolumab or nivolumab in combination with ipilimumab should be withheld or discontinued (see section 4.2), and appropriate treatment instituted.

Solid organ transplant rejection has been reported in the post-marketing setting in patients treated with PD-1 inhibitors. Treatment with nivolumab may increase the risk of rejection in solid organ transplant recipients. The benefit of treatment with nivolumab versus the risk of possible organ rejection should be considered in these patients.

Infusion reactions

Severe infusion reactions have been reported in clinical trials of nivolumab or nivolumab in combination with ipilimumab (see section 4.8). In case of a severe or life-threatening infusion reaction, the nivolumab or nivolumab in combination with ipilimumab infusion must be discontinued and appropriate medical therapy administered. Patients with mild or moderate infusion reaction may receive nivolumab or nivolumab in combination with ipilimumab with close monitoring and use of premedication according to local treatment guidelines for prophylaxis of infusion reactions.

Disease-specific precautions

Melanoma

Patients with a baseline performance score ≥ 2, active brain metastases or autoimmune disease, and patients who had been receiving systemic immunosuppressants prior to study entry were excluded from the clinical trials of nivolumab or nivolumab in combination with ipilimumab. Patients with ocular/uveal melanoma were excluded from clinical trials of melanoma. In addition, CA209037 excluded patients who have had a Grade 4 adverse reaction that was related to anti-CTLA-4 therapy (see section 5.1). In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit/risk on an individual basis.

Relative to nivolumab monotherapy, an increase in PFS for the combination of nivolumab with ipilimumab is established only in patients with low tumour PD-L1 expression. The improvement in OS was similar between nivolumab in combination with ipilimumab and nivolumab monotherapy in patients with high tumour PD-L1 expression (PD-L1 ≥ 1%). Before initiating treatment with the combination, physicians are advised to carefully evaluate the individual patient and tumour characteristics, taking into consideration the observed benefits and the toxicity of the combination relative to nivolumab monotherapy (see sections 4.8 and 5.1).

Use of nivolumab in melanoma patients with rapidly progressing disease

Physicians should consider the delayed onset of nivolumab effect before initiating treatment in patients with rapidly progressing disease (see section 5.1).

Non-Small Cell Lung Cancer

Patients with a baseline performance score ≥ 2, active brain metastases or autoimmune disease, symptomatic interstitial lung disease, and patients who had been receiving systemic immunosuppressants prior to study entry were excluded from the clinical trials of NSCLC (see sections 4.5 and 5.1). In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit/risk on an individual basis.

Physicians should consider the delayed onset of nivolumab effect before initiating treatment in patients with poorer prognostic features and/or aggressive disease. In non-squamous NSCLC, a higher number of deaths within 3 months was observed in nivolumab compared to docetaxel. Factors associated with early deaths were poorer prognostic factors and/or more aggressive disease combined with low or no tumour PD-L1 expression (see section 5.1).

Renal Cell Carcinoma

Patients with any history of or concurrent brain metastases, active autoimmune disease, or medical conditions requiring systemic immunosuppression were excluded from the pivotal trial in RCC (see sections 4.5 and 5.1). In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit/risk on an individual basis.

Classical Hodgkin Lymphoma

Patients with active autoimmune disease and symptomatic interstitial lung disease were excluded from clinical trials of cHL. In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit/risk on an individual basis.

Complications of allogeneic Haematopoietic Stem Cell Transplant (HSCT) in classical Hodgkin Lymphoma

Preliminary results from the follow-up of patients undergoing allogeneic HSCT after previous exposure to nivolumab showed a higher than expected number of cases of acute graft-versus-host-disease (aGVHD) and transplant related mortality (TRM). Until further data become available, careful consideration to the potential benefits of HSCT and the possible increased risk of transplant related complications should be made case by case (see section 4.8).

Head and Neck Cancer

Patients with a baseline performance score ≥ 2, active brain or leptomeningeal metastases, active autoimmune disease, medical conditions requiring systemic immunosuppression, or carcinoma of the nasopharynx or salivary gland as the primary tumour sites were excluded from the SCCHN clinical trial (see sections 4.5 and 5.1). In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit/risk on an individual basis.

Physicians should consider the delayed onset of nivolumab effect before initiating treatment in patients with poorer prognostic features and/or aggressive disease. In head and neck cancer, a higher number of deaths within 3 months was observed in nivolumab compared to docetaxel. Factors associated with early deaths were ECOG performance status, fast progressive disease on prior platinum therapy and high tumour burden.

Urothelial Carcinoma

Patients with a baseline performance score ≥2, active brain metastases or leptomeningeal metastases, active autoimmune disease, or medical conditions requiring systemic immunosuppression were excluded from the clinical trials of urothelial carcinoma (see sections 4.5 and 5.1). In the absence of data, nivolumab should be used with caution in these populations after careful consideration of the potential benefit-risk on an individual basis.

Patients on controlled sodium diet

Each mL of this medicinal product contains 0.1 mmol (or 2.5 mg) sodium. To be taken into consideration when treating patients on a controlled sodium diet.

Patient Alert Card

All prescribers of OPDIVO must be familiar with the Physician Information and Management Guidelines. The prescriber must discuss the risks of OPDIVO therapy with the patient. The patient will be provided with the Patient Alert Card with each prescription.


Go to top of the page
4.5 Interaction with other medicinal products and other forms of interaction

Nivolumab is a human monoclonal antibody, as such pharmacokinetic interaction studies have not been conducted. As monoclonal antibodies are not metabolised by cytochrome P450 (CYP) enzymes or other drug metabolising enzymes, inhibition or induction of these enzymes by co-administered medicinal products is not anticipated to affect the pharmacokinetics of nivolumab.

Other forms of interaction

Systemic immunosuppression

The use of systemic corticosteroids and other immunosuppressants at baseline, before starting nivolumab, should be avoided because of their potential interference with the pharmacodynamic activity. However, systemic corticosteroids and other immunosuppressants can be used after starting nivolumab to treat immune-related adverse reactions. The preliminary results show that systemic immunosuppression after starting nivolumab treatment does not appear to preclude the response on nivolumab.


4.6 Fertility, pregnancy and lactation

Pregnancy

There are no data on the use of nivolumab in pregnant women. Studies in animals have shown embryofoetal toxicity (see section 5.3). Human IgG4 is known to cross the placental barrier and nivolumab is an IgG4; therefore, nivolumab has the potential to be transmitted from the mother to the developing foetus. Nivolumab is not recommended during pregnancy and in women of childbearing potential not using effective contraception unless the clinical benefit outweighs the potential risk. Effective contraception should be used for at least 5 months following the last dose of nivolumab.

Breast-feeding

It is unknown whether nivolumab is secreted in human milk. Because many medicinal products, including antibodies, can be secreted in human milk, a risk to the newborns/infants cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue from nivolumab therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.

Fertility

Studies to evaluate the effect of nivolumab on fertility have not been performed. Thus, the effect of nivolumab on male and female fertility is unknown.


Go to top of the page
4.7 Effects on ability to drive and use machines

Based on its pharmacodynamic properties, nivolumab is unlikely to affect the ability to drive and use machines. Because of potential adverse reactions such as fatigue (see section 4.8), patients should be advised to use caution when driving or operating machinery until they are certain that nivolumab does not adversely affect them.


Go to top of the page
4.8 Undesirable effects

Summary of the safety profile

In the pooled dataset of nivolumab 3 mg/kg as monotherapy across tumour types (n = 2578) with minimum follow-up ranging from 2.3 to 28 months, the most frequent adverse reactions (≥ 10%) were fatigue (30%), rash (17%), pruritus (13%), diarrhoea (13%), and nausea (12%). The majority of adverse reactions were mild to moderate (Grade 1 or 2). With a minimum of 24 months follow-up in NSCLC, no new safety signals were identified.

In the pooled dataset of nivolumab 1 mg/kg in combination with ipilimumab 3 mg/kg in melanoma (n = 448) with minimum follow-up ranging from 6 to 28 months, the most frequent adverse reactions (≥ 10%) were rash (52%), fatigue (46%), diarrhoea (43%), pruritus (36%), nausea (26%), pyrexia (19%), decreased appetite (16%), hypothyroidism (16%), colitis (15%), vomiting (14%), arthralgia (13%), abdominal pain (13%), headache (11%), and dyspnoea (10%). The majority of adverse reactions were mild to moderate (Grade 1 or 2).

Among the patients treated with nivolumab 1 mg/kg in combination with ipilimumab 3 mg/kg in CA209067, 154/313 (49%) had the first onset of Grade 3 or 4 adverse reactions during the initial combination phase. Among the 147 patients in this group who continued treatment in the single-agent phase, 47 (32%) experienced at least one Grade 3 or 4 adverse reaction during the single-agent phase.

Tabulated summary of adverse reactions

Adverse reactions reported in the pooled dataset for patients treated with nivolumab monotherapy (n = 2578) and for patients treated with nivolumab in combination with ipilimumab (n = 448) are presented in Table 2. These reactions are presented by system organ class and by frequency. Frequencies are defined as: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available post-marketing data). Within each frequency grouping, adverse reactions are presented in the order of decreasing seriousness.

Table 2: Adverse reactions

Nivolumab monotherapy

Nivolumab in combination with ipilimumab

Infections and infestations

Common

upper respiratory tract infection

pneumonia, upper respiratory tract infection

Uncommon

pneumoniaa, bronchitis

bronchitis

Neoplasms benign, malignant and unspecified (including cysts and polyps)

Rare

histiocytic necrotising lymphadenitis (Kikuchi lymphadenitis)

Blood and lymphatic system disorders

Very common

neutropaeniaa,b

Common

eosinophilia

Uncommon

eosinophilia

Immune system disorders

Common

infusion related reactionc, hypersensitivityc

infusion related reaction, hypersensitivity

Uncommon

sarcoidosis

Rare

anaphylactic reactionc

Not known

solid organ transplant rejection

solid organ transplant rejection

Endocrine disorders

Very common

hypothyroidism

Common

hypothyroidism, hyperthyroidism

adrenal insufficiency, hypopituitarism, hypophysitis, hyperthyroidism, thyroiditis

Uncommon

adrenal insufficiency, hypopituitarism, hypophysitis, thyroiditis, diabetes mellitus

diabetic ketoacidosisc, diabetes mellitusc

Rare

diabetic ketoacidosis

Metabolism and nutrition disorders

Very common

decreased appetite

Common

decreased appetite

dehydration

Uncommon

dehydration, metabolic acidosis

Hepatobiliary disorders

Common

hepatitisc

Uncommon

hepatitisc

Rare

cholestasis

Nervous system disorders

Very common

headache

Common

peripheral neuropathy, headache, dizziness

peripheral neuropathy, dizziness

Uncommon

polyneuropathy, autoimmune neuropathy (including facial and abducens nerve paresis)

Guillain-Barré syndrome, polyneuropathy, neuritis, peroneal nerve palsy, autoimmune neuropathy (including facial and abducens nerve paresis), encephalitisc

Rare

Guillain-Barré syndrome, demyelination, myasthenic syndrome, encephalitisa,c

Eye disorders

Common

uveitis, blurred vision

Uncommon

uveitis, blurred vision, dry eye

Not known

Vogt-Koyanagi-Harada syndromeh

Vogt-Koyanagi-Harada syndromeh

Cardiac disorders

Common

tachycardia

Uncommon

tachycardia

arrhythmia (including ventricular arrhythmia)a,d, atrial fibrillation, myocarditisa,f

Rare

arrhythmia (including ventricular arrhythmia)d, atrial fibrillation, myocarditisa,f

Vascular disorders

Common

hypertension

hypertension

Rare

vasculitis

Respiratory, thoracic and mediastinal disorders

Very common

dyspnoea

Common

pneumonitisa,c, dyspnoeaa, cough

pneumonitisa,c, pulmonary embolisma, cough

Uncommon

pleural effusion

pleural effusion

Rare

lung infiltration

Gastrointestinal disorders

Very common

diarrhoea, nausea

colitisa, diarrhoea, vomiting, nausea, abdominal pain

Common

colitisa, stomatitis, vomiting, abdominal pain, constipation, dry mouth

stomatitis, pancreatitis, constipation, dry mouth

Uncommon

pancreatitis, gastritis

intestinal perforationa, gastritis, duodenitis

Rare

duodenal ulcer

Skin and subcutaneous tissue disorders

Very common

rashe, pruritus

rashe, pruritus

Common

vitiligo, dry skin, erythema, alopecia

vitiligo, dry skin, erythema, alopecia, urticaria

Uncommon

erythema multiforme, psoriasis, rosacea, urticaria

psoriasis

Rare

toxic epidermal necrolysisa,f, Stevens-Johnson syndromea,f

toxic epidermal necrolysisa,f, Stevens-Johnson syndromef

Musculoskeletal and connective tissue disorders

Very common

arthralgia

Common

musculoskeletal paing, arthralgia

musculoskeletal paing

Uncommon

polymyalgia rheumatica, arthritis

spondyloarthropathy, Sjogren's syndrome, arthritis, myopathy, myositis (including polymyositis)a,f, rhabdomyolysisa,f

Rare

Sjogren's syndrome, myopathy, myositis (including polymyositis)a,f, rhabdomyolysisa,f

Renal and urinary disorders

Common

renal failure (including acute kidney injury)a,c

Uncommon

tubulointerstitial nephritis, renal failure (including acute kidney injury)a,c

tubulointerstitial nephritis

General disorders and administration site conditions

Very common

fatigue

fatigue, pyrexia

Common

pyrexia, oedema (including peripheral oedema)

oedema (including peripheral oedema), pain

Uncommon

pain, chest pain

chest pain

Investigationsb

Very common

increased AST, increased ALT, increased alkaline phosphatase, increased lipase, increased amylase, hypocalcaemia, increased creatinine, hyperglycaemiac, lymphopaenia, leucopoenia, thrombocytopaenia, anaemia, hypercalcaemia, hyperkalaemia, hypokalaemia, hypomagnesaemia, hyponatraemia

increased AST, increased ALT, increased total bilirubin, increased alkaline phosphatase, increased lipase, increased amylase, increased creatinine, hyperglycaemiac, hypoglycaemia, lymphopaenia, leucopoenia, neutropaenia, thrombocytopaenia, anaemia, hypocalcaemia, hyperkalaemia, hypokalaemia, hypomagnesaemia, hyponatraemia

Common

increased total bilirubin, hypoglycaemia, hypermagnesaemia, hypernatraemia, weight decreased

hypercalcaemia, hypermagnesaemia, hypernatraemia, weight decreased

a Fatal cases have been reported in completed or ongoing clinical studies

b Frequencies of laboratory terms reflect the proportion of patients who experienced a worsening from baseline in laboratory measurements. See “Description of selected adverse reactions; laboratory abnormalities” below.

c Life-threatening cases have been reported in completed or ongoing clinical studies.

d The frequency of adverse events in the cardiac disorders system organ class regardless of causality was higher in the nivolumab group than in the chemotherapy group in post-CTLA4/BRAF inhibitor metastatic melanoma population. Incidence rates per 100 person-years of exposure were 9.3 vs. 0; serious cardiac events were reported by 4.9% patients in the nivolumab group vs. 0 in the investigator´s choice group. The frequency of cardiac adverse events was lower in the nivolumab group than in the dacarbazine group in the metastatic melanoma without prior treatment population. All were considered not related to nivolumab by investigators except arrhythmia (atrial fibrillation, tachycardia and ventricular arrhythmia).

e Rash is a composite term which includes maculopapular rash, rash erythematous, rash pruritic, rash follicular, rash macular, rash morbilliform, rash papular, rash pustular, rash papulosquamous, rash vesicular, rash generalised, exfoliative rash, dermatitis, dermatitis acneiform, dermatitis allergic, dermatitis atopic, dermatitis bullous, dermatitis exfoliative, dermatitis psoriasiform, drug eruption and pemphigoid.

f Reported also in studies outside the pooled dataset. The frequency is based on the program-wide exposure.

g Musculoskeletal pain is a composite term which includes back pain, bone pain, musculoskeletal chest pain, musculoskeletal discomfort, myalgia, neck pain, pain in extremity, and spinal pain.

h Post-marketing event (also see section 4.4)

Description of selected adverse reactions

Nivolumab or nivolumab in combination with ipilimumab is associated with immune-related adverse reactions. With appropriate medical therapy, immune-related adverse reactions resolved in most cases. Permanent discontinuation of treatment was required in a greater proportion of patients receiving nivolumab in combination with ipilimumab than in those receiving nivolumab monotherapy for immune-related colitis (16% and 0.8%, respectively), immune-related hepatitis (9% and 1%), and immune-related endocrinopathies (2.7% and 0.1%). Among patients who experienced an event, high-dose corticosteroids (at least 40 mg prednisone equivalents) were required in a greater proportion of patients receiving the combination regimen than in patients receiving nivolumab monotherapy for the management of immune-related colitis (46% and 15%, respectively), immune-related hepatitis (46% and 21%), immune-related endocrinopathies (27% and 7%, respectively), and immune-related skin adverse reaction (7% and 4%, respectively). The management guidelines for these adverse reactions are described in section 4.4.

Immune-related pneumonitis

In patients treated with nivolumab monotherapy, the incidence of pneumonitis, including interstitial lung disease and lung infiltration, was 3.4% (87/2578). The majority of cases were Grade 1 or 2 in severity reported in 0.8% (21/2578) and 1.7% (44/2578) of patients respectively. Grade 3 and 4 cases were reported in 0.7% (19/2578) and <0.1% (1/2578) of patients respectively. Grade 5 cases were reported in < 0.1% (2/2578) of patients in these studies. Median time to onset was 3.6 months (range: 0.2-19.6). Resolution occurred in 63 patients (72.4%) with a median time to resolution of 6.1 weeks (range: 0.1+-96.7+); + denotes a censored observation.

In patients treated with nivolumab in combination with ipilimumab, the incidence of pneumonitis including interstitial lung disease, was 7.8% (35/448). Grade 2, Grade 3, and Grade 4 cases were reported in 4.7% (21/448), 1.1% (5/448), and 0.2% (1/448) of patients, respectively. One of the Grade 3 pneumonitis cases worsened over 11 days with a fatal outcome. Median time to onset was 2.6 months (range: 0.7-12.6). Resolution occurred in 33 patients (94.3%) with a median time to resolution of 6.1 weeks (range: 0.3-35.1).

Immune-related colitis

In patients treated with nivolumab monotherapy, the incidence of diarrhoea, colitis, or frequent bowel movements was 13.1% (339/2578). The majority of cases were Grade 1 or 2 in severity reported in 8.5% (220/2578) and 3.0% (78/2578) of patients respectively. Grade 3 cases were reported in 1.6% (41/2578) of patients. No Grade 4 or 5 cases were reported in these studies. Median time to onset was 1.8 months (range: 0.0-26.6). Resolution occurred in 296 patients (88.1%) with a median time to resolution of 2.1 weeks (range: 0.1-124.4+).

In patients treated with nivolumab in combination with ipilimumab, the incidence of diarrhoea or colitis was 46.7% (209/448). Grade 2, Grade 3, and Grade 4 cases were reported in 13.6% (61/448), 15.8% (71/448), and 0.4% (2/448) of patients, respectively. No Grade 5 cases were reported. Median time to onset was 1.2 months (range: 0.0-22.6). Resolution occurred in 186 patients (89.4%) with a median time to resolution of 3.0 weeks (range: 0.1-159.4+).

Immune-related hepatitis

In patients treated with nivolumab monotherapy, the incidence of liver function test abnormalities was 6.7% (173/2578). The majority of cases were Grade 1 or 2 in severity reported in 3.5% (91/2578) and 1.2% (32/2578) of patients respectively. Grade 3 and 4 cases were reported in 1.6% (41/2578) and 0.3% (9/2578) of patients, respectively. No Grade 5 cases were reported in these studies. Median time to onset was 2.1 months (range: 0.0-27.6). Resolution occurred in 132 patients (76.7%) with a median time to resolution of 5.9 weeks (range: 0.1-82.6+).

In patients treated with nivolumab in combination with ipilimumab, the incidence of liver function test abnormalities was 29.5% (132/448). Grade 2, Grade 3, and Grade 4 cases were reported in 6.7% (30/448), 15.4% (69/448), and 1.8% (8/448) of patients, respectively. No Grade 5 cases were reported. Median time to onset was 1.5 months (range: 0.0-30.1). Resolution occurred in 124 patients (93.9%) with a median time to resolution of 5.1 weeks (range: 0.1-106.9).

Immune-related nephritis and renal dysfunction

In patients treated with nivolumab monotherapy, the incidence of nephritis or renal dysfunction was 2.8% (71/2578). The majority of cases were Grade 1 or 2 in severity reported in 1.6% (41/2578) and 0.7% (18/2578) of patients respectively. Grade 3 and 4 cases were reported in 0.4% (11/2578) and <0.1% (1/2578) of patients, respectively. No Grade 5 nephritis or renal dysfunction was reported in these studies. Median time to onset was 2.3 months (range: 0.0-18.2). Resolution occurred in 42 patients (61.8%) with a median time to resolution of 12.1 weeks (range: 0.3-79.1+).

In patients treated with nivolumab in combination with ipilimumab, the incidence of nephritis or renal dysfunction was 5.1% (23/448). Grade 2, Grade 3, and Grade 4 cases were reported in 1.6% (7/448), 0.9% (4/448), and 0.7% (3/448) of patients, respectively. No Grade 5 cases were reported. Median time to onset was 2.6 months (range: 0.5-21.8). Resolution occurred in 21 patients (91.3%) with a median time to resolution of 2.1 weeks (range: 0.1- 125.1+).

Immune-related endocrinopathies

In patients treated with nivolumab monotherapy, the incidence of thyroid disorders, including hypothyroidism or hyperthyroidism, was 9.6% (248/2578). The majority of cases were Grade 1 or 2 in severity reported in 4.2% (107/2578) and 5.4% (139/2578) of patients, respectively. Grade 3 thyroid disorders were reported in < 0.1% (2/2578) of patients. Hypophysitis (1 Grade 1, 2 Grade 2, 5 Grade 3, and 1 Grade 4), hypopituitarism (4 Grade 2 and 1 Grade 3), adrenal insufficiency (including secondary adrenocortical insufficiency) (1 Grade 1, 9 Grade 2, and 5 Grade 3), diabetes mellitus (including Type 1 diabetes mellitus) (3 Grade 2 and 1 Grade 3), and diabetic ketoacidosis (2 Grade 3) were reported. No Grade 5 cases were reported in these studies. Median time to onset of these endocrinopathies was 2.8 months (range: 0.3-29.1). Resolution occurred in 117 patients (42.9%). Time to resolution ranged from 0.4 to 144.1+ weeks.

In patients treated with nivolumab in combination with ipilimumab, the incidence of thyroid disorders was 25.2% (113/448). Grade 2 and Grade 3 thyroid disorders were reported in 14.5% (65/448) and 1.3% (6/448) of patients, respectively. Grade 2 and Grade 3 hypophysitis (including lymphocytic hypophysitis) occurred in 5.8% (26/448) and 2.0% (9/448) of patients, respectively. Grade 2 and Grade 3 hypopituitarism occurred in 0.4% (2/448) and 0.7% (3/448) of patients, respectively. Grade 2, Grade 3, and Grade 4 adrenal insufficiency (including secondary adrenocortical insufficiency) occurred in 1.6% (7/448), 1.3% (6/448) and 0.2% (1/448) of patients, respectively. Grade 1, Grade 2, Grade 3, and Grade 4 diabetes mellitus and Grade 4 diabetic ketoacidosis were each reported in 0.2% (1/448) of patients. No Grade 5 endocrinopathy was reported. Median time to onset of these endocrinopathies was 1.9 months (range: 0.0-28.1). Resolution occurred in 64 patients (45.4%). Time to resolution ranged from 0.4 to 155.4+ weeks.

Immune-related skin adverse reactions

In patients treated with nivolumab monotherapy, the incidence of rash was 26.4% (680/2578). The majority of cases were Grade 1 in severity reported in 20.1% (518/2578) of patients. Grade 2 and Grade 3 cases were reported in 5.1% (131/2578) and 1.2% (31/2578) of patients respectively. No Grade 4 or 5 cases were reported in these studies. Median time to onset was 1.4 months (range: 0.0-27.9). Resolution occurred in 428 patients (63.8%) with a median time to resolution of 17.1 weeks (0.1-150.0+).

In patients treated with nivolumab in combination with ipilimumab, the incidence of rash was 65.0% (291/448). Grade 2 and Grade 3 cases were reported in 20.3% (91/448) and 7.6% (34/448) of patients, respectively. No Grade 4 or 5 cases were reported. Median time to onset was 0.5 months (range: 0.0-19.4). Resolution occurred in 191 patients (65.9%) with a median time to resolution of 11.4 weeks (range: 0.1-150.1+).

Rare cases of SJS and TEN some of them with fatal outcome have been observed (see sections 4.2 and 4.4).

Infusion reactions

In patients treated with nivolumab monotherapy, the incidence of hypersensitivity/infusion reactions was 4.7% (121/2578), including 6 Grade 3 and 2 Grade 4 cases.

In patients treated with nivolumab in combination with ipilimumab, the incidence of hypersensitivity/infusion reactions was 3.8% (17/448); all were Grade 1 or 2 in severity. Grade 2 cases were reported in 2.2% (10/448) of patients. No Grade 3-5 cases were reported.

Complications of allogeneic HSCT in classical Hodgkin Lymphoma

In 49 evaluated patients from two cHL studies who underwent allogeneic HSCT after discontinuing nivolumab monotherapy, Grade 3 or 4 acute GVHD was reported in 13/49 patients (26.5%). Hyperacute GVHD, defined as acute GVHD occurring within 14 days after stem cell infusion, was reported in three patients (6%). A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in six patients (12%) within the first 6 weeks post-transplantation, with three patients responding to steroids. Hepatic veno-occlusive disease occurred in one patient, who died of GVHD and multi-organ failure. Nine of 49 patients (18.4%) died from complications of allogeneic HSCT after nivolumab. The 49 patients had a median follow-up from subsequent allogeneic HSCT of 5.6 months (range: 0-19 months).

Laboratory abnormalities

In patients treated with nivolumab monotherapy, the proportion of patients who experienced a shift from baseline to a Grade 3 or 4 laboratory abnormality was as follows: 5.2% for anaemia (all Grade 3), 1.0% for thrombocytopaenia, 1.0% for leucopoenia, 10.0% for lymphopaenia, 1.1% for neutropaenia, 2.1% for increased alkaline phosphatase, 2.7% for increased AST, 2.2% for increased ALT, 1.2% for increased total bilirubin, 0.9% for increased creatinine, 3.8% for hyperglycaemia, 1.0% for hypoglycaemia, 3.5% for increased amylase, 7.9% for increased lipase, 6.4% for hyponatraemia, 1.8% for hyperkalaemia, 1.5% for hypokalaemia, 1.2% for hypercalcaemia, 0.7% for hypermagnesaemia, 0.5% for hypomagnesaemia, 0.7% for hypocalcaemia, and 0.1% for hypernatraemia.

In patients treated with nivolumab in combination with ipilimumab, the proportion of patients who experienced a worsening from baseline to a Grade 3 or 4 laboratory abnormality was as follows: 2.8% for anaemia (all Grade 3), 1.2% for thrombocytopaenia, 0.5% for leucopoenia, 6.7% for lymphopaenia, 0.7% for neutropaenia, 4.3% for increased alkaline phosphatase, 12.4% for increased AST, 15.3% for increased ALT, 1.2% for increased total bilirubin, 2.4% for increased creatinine, 5.3% for hyperglycaemia, 8.7% for increased amylase, 19.5% for increased lipase, 1.2% for hypocalcaemia, 0.2% each for hypernatraemia and hypercalcaemia, 0.5% for hyperkalemia, 0.3% for hypermagnesaemia, 4.8% for hypokalaemia, and 9.5% for hyponatraemia.

Immunogenicity

Of the 2022 patients who were treated with nivolumab monotherapy 3 mg/kg every 2 weeks and evaluable for the presence of anti-product-antibodies, 231 patients (11.4%) tested positive for treatment-emergent anti-product-antibodies with fifteen patients (0.7 %) testing positive for neutralising antibodies.

Of 394 patients who were treated with nivolumab in combination with ipilimumab and evaluable for the presence of anti-nivolumab antibodies, 149 patients (37.8%) tested positive for treatment-emergent anti-nivolumab antibodies with 18 patients (4.6%) testing positive for neutralising antibodies.

Although the clearance of nivolumab was increased by 24% when anti-nivolumab-antibodies were present, there was no evidence of loss of efficacy or altered toxicity profile in the presence of nivolumab antibodies based on the pharmacokinetic and exposure-response analyses for both monotherapy and combination.

Elderly

No overall differences in safety were reported between elderly (≥ 65 years) and younger patients (< 65 years). Data from NSCLC and SCCHN patients 75 years of age or older are too limited to draw conclusions on this population (see section 5.1). Data from cHL patients 65 years of age or older are too limited to draw conclusions on this population (see section 5.1).

Hepatic or renal impairment

In the non-squamous NSCLC study (CA209057), the safety profile in patients with baseline renal or hepatic impairment was comparable to that in the overall population. These results should be interpreted with caution due to the small sample size within the subgroups.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the HPRA Pharmacovigilance, Earlsfort Terrace, IRL - Dublin 2; Tel: +353 1 6764971; Fax: +353 1 6762517. Website: www.hpra.ie; E-mail: medsafety@hpra.ie.


Go to top of the page
4.9 Overdose

No cases of overdose have been reported in clinical trials. In case of overdose, patients should be closely monitored for signs or symptoms of adverse reactions, and appropriate symptomatic treatment instituted immediately.


Go to top of the page
5. PHARMACOLOGICAL PROPERTIES

Go to top of the page
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, monoclonal antibodies. ATC code: L01XC17.

Mechanism of action

Nivolumab is a human immunoglobulin G4 (IgG4) monoclonal antibody (HuMAb), which binds to the programmed death-1 (PD-1) receptor and blocks its interaction with PD-L1 and PD-L2. The PD-1 receptor is a negative regulator of T-cell activity that has been shown to be involved in the control of T-cell immune responses. Engagement of PD-1 with the ligands PD-L1 and PD-L2, which are expressed in antigen presenting cells and may be expressed by tumours or other cells in the tumour microenvironment, results in inhibition of T-cell proliferation and cytokine secretion. Nivolumab potentiates T-cell responses, including anti-tumour responses, through blockade of PD-1 binding to PD-L1 and PD-L2 ligands. In syngeneic mouse models, blocking PD-1 activity resulted in decreased tumour growth.

Combined nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) mediated inhibition results in improved anti-tumour responses in metastatic melanoma. In murine syngeneic tumour models, dual blockade of PD-1 and CTLA-4 resulted in synergistic anti-tumour activity.

Clinical efficacy and safety

Melanoma

Randomised phase 3 study vs. dacarbazine (CA209066)

The safety and efficacy of nivolumab 3 mg/kg for the treatment of advanced (unresectable or metastatic) melanoma were evaluated in a phase 3, randomised, double-blind study (CA209066). The study included adult patients (18 years or older) with confirmed, treatment-naive, Stage III or IV BRAF wild-type melanoma and an ECOG performance-status score of 0 or 1. Patients with active autoimmune disease, ocular melanoma, or active brain or leptomeningeal metastases were excluded from the study.

A total of 418 patients were randomised to receive either nivolumab (n = 210) administered intravenously over 60 minutes at 3 mg/kg every 2 weeks or dacarbazine (n = 208) at 1000 mg/m2 every 3 weeks. Randomisation was stratified by tumour PD-L1 status and M stage (M0/M1a/M1b versus M1c). Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. Treatment after disease progression was permitted for patients who had a clinical benefit and did not have substantial adverse effects with the study drug, as determined by the investigator. Tumour assessments, according to the Response Evaluation Criteria in Solid Tumours (RECIST), version 1.1, were conducted 9 weeks after randomisation and continued every 6 weeks for the first year and then every 12 weeks thereafter. The primary efficacy outcome measure was OS. Key secondary efficacy outcome measures were investigator-assessed PFS and objective response rate (ORR).

Baseline characteristics were balanced between the two groups. The median age was 65 years (range: 18-87), 59% were men, and 99.5% were white. Most patients had ECOG performance score of 0 (64%) or 1 (34%). Sixty-one percent of patients had M1c stage disease at study entry. Seventy-four percent of patients had cutaneous melanoma, and 11% had mucosal melanoma; 35% of patients had PD-L1 positive melanoma (5% tumour cell membrane expression). Sixteen percent of patients had received prior adjuvant therapy; the most common adjuvant treatment was interferon (9%). Four percent of patients had a history of brain metastasis, and 37% of patients had a baseline LDH level greater than ULN at study entry.

The Kaplan-Meier curves for OS are shown in Figure 1.

Figure 1: Kaplan-Meier curves of OS (CA209066)

The observed OS benefit was consistently demonstrated across subgroups of patients including baseline ECOG performance status, M stage, history of brain metastases, and baseline LDH level. Survival benefit was observed regardless of whether patients had tumours that were designated PD-L1 negative or PD-L1 positive (tumour membrane expression cut off of 5% or 10%).

Data available indicate that the onset of nivolumab effect is delayed such that benefit of nivolumab above chemotherapy may take 2-3 months.

Efficacy results are shown in Table 3.

Table 3: Efficacy Results (CA209066)

nivolumab

(n = 210)

dacarbazine

(n = 208)

Overall survival

Events

50 (23.8%)

96 (46.2%)

Hazard ratio

0.42

99.79% CI

(0.25, 0.73)

95% CI

(0.30, 0.60)

p-value

< 0.0001

Median (95% CI)

Not reached

10.8 (9.33, 12.09)

Rate (95% CI)

At 6 months

84.1 (78.3, 88.5)

71.8 (64.9, 77.6)

At 12 months

72.9 (65.5, 78.9)

42.1 (33.0, 50.9)

Progression-free survival

Events

108 (51.4%)

163 (78.4%)

Hazard ratio

0.43

95% CI

(0.34, 0.56)

p-value

< 0.0001

Median (95% CI)

5.1 (3.48, 10.81)

2.2 (2.10, 2.40)

Rate (95% CI)

At 6 months

48.0 (40.8, 54.9)

18.5 (13.1, 24.6)

At 12 months

41.8 (34.0, 49.3)

NA

Objective response

84

(40.0%)

29

(13.9%)

(95% CI)

(33.3, 47.0)

(9.5, 19.4)

Odds ratio (95% CI)

4.06 (2.52, 6.54)

p-value

< 0.0001

Complete response (CR)

16

(7.6%)

2

(1.0%)

Partial response (PR)

68

(32.4%)

27

(13.0%)

Stable disease (SD)

35

(16.7%)

46

(22.1%)

Median duration of response

Months (range)

Not reached

(0+-12.5+)

6.0

(1.1-10.0+)

Median time to response

Months (range)

2.1

(1.2-7.6)

2.1

(1.8-3.6)

“+” denotes a censored observation.

Randomised phase 3 study vs. chemotherapy (CA209037)

The safety and efficacy of nivolumab 3 mg/kg for the treatment of advanced (unresectable or metastatic) melanoma were evaluated in a phase 3, randomised, open-label study (CA209037). The study included adult patients who had progressed on or after ipilimumab and if BRAF V600 mutation positive had also progressed on or after BRAF kinase inhibitor therapy. Patients with active autoimmune disease, ocular melanoma, active brain or leptomeningeal metastases or a known history of prior ipilimumab-related high-grade (Grade 4 per CTCAE v4.0) adverse reactions, except for resolved nausea, fatigue, infusion reactions, or endocrinopathies, were excluded from the study.

A total of 405 patients were randomised to receive either nivolumab (n = 272) administered intravenously over 60 minutes at 3 mg/kg every 2 weeks or chemotherapy (n = 133) which consisted of the investigator's choice of either dacarbazine (1000 mg/m2 every 3 weeks) or carboplatin (AUC 6 every 3 weeks) and paclitaxel (175 mg/m2 every 3 weeks). Randomisation was stratified by BRAF and tumour PD-L1 status and best response to prior ipilimumab.

The co-primary efficacy outcome measures were confirmed ORR in the first 120 patients treated with nivolumab, as measured by independent radiology review committee (IRRC) using RECIST, version 1.1, and comparison of OS of nivolumab to chemotherapy. Additional outcome measures included duration and timing of response.

The median age was 60 years (range: 23-88). Sixty-four percent of patients were men and 98% were white. ECOG performance scores were 0 for 61% of patients and 1 for 39% of patients. The majority (75%) of patients had M1c stage disease at study entry. Seventy-three percent of patients had cutaneous melanoma and 10% had mucosal melanoma. The number of prior systemic regimen received was 1 for 27% of patients, 2 for 51% of patients, and > 2 for 21% of patients. Twenty-two percent of patients had tumours that tested BRAF mutation positive and 50% of patients had tumours that were considered PD-L1 positive. Sixty-four percent of patients had no prior clinical benefit (CR/PR or SD) on ipilimumab. Baseline characteristics were balanced between groups except for the proportions of patients who had a history of brain metastasis (19% and 13% in the nivolumab group and chemotherapy group, respectively) and patients with LDH greater than ULN at baseline (51% and 35%, respectively).

At the time of this final ORR analysis, results from 120 nivolumab-treated patients and 47 chemotherapy-treated patients who had a minimum of 6 months of follow-up were analysed. Efficacy results are presented in Table 4.

Table 4: Best overall response, time and duration of response (CA209037)

nivolumab

(n = 120)

chemotherapy

(n = 47)

Confirmed objective response (IRRC)

38

(31.7%)

5

(10.6%)

(95% CI)

(23.5, 40.8)

(3.5, 23.1)

Complete response (CR)

4

(3.3%)

0

Partial response (PR)

34

(28.3%)

5

(10.6%)

Stable disease (SD)

28

(23.3%)

16

(34.0%)

Median Duration of Response

Months (range)

Not Reached

3.6

(Not available)

Median Time to Response

Months (range)

2.1

(1.6-7.4)

3.5

(2.1-6.1)

Data available indicate that the onset of nivolumab effect is delayed such that benefit of nivolumab above chemotherapy may take 2-3 months.

Updated analysis (24-month follow-up)

Among all randomised patients, the ORR was 27.2% (95% CI: 22.0, 32.9) in the nivolumab group and 9.8% (95% CI: 5.3, 16.1) in the chemotherapy group. Median durations of response were 31.9 months (range: 1.4+-31.9) and 12.8 months (range: 1.3+-13.6+), respectively. The PFS HR for nivolumab vs. chemotherapy was 1.03 (95% CI: 0.78, 1.36). The ORR and PFS were assessed by IRRC per RECIST version 1.1.

There was no statistically significant difference between nivolumab and chemotherapy in the final OS analysis. The primary OS analysis was not adjusted to account for subsequent therapies, with 54 (40.6%) patients in the chemotherapy arm subsequently receiving an anti-PD1 treatment. OS may be confounded by dropout, imbalance of subsequent therapies and differences in baseline factors. More patients in the nivolumab arm had poor prognostic factors (elevated LDH and brain metastases) than in the chemotherapy arm.

Efficacy by BRAF status: Objective responses to nivolumab (according to the definition of the co-primary endpoint) were observed in patients with or without BRAF mutation-positive melanoma. The ORRs in the BRAF mutation-positive subgroup were 17% (95% CI: 8.4, 29.0) for nivolumab and 11% (95% CI: 2.4, 29.2) for chemotherapy, and in the BRAF wild-type subgroup were 30% (95% CI: 24.0, 36.7) and 9% (95% CI: 4.6, 16.7), respectively.

The PFS HRs for nivolumab vs. chemotherapy were 1.58 (95% CI: 0.87, 2.87) for BRAF mutation-positive patients and 0.82 (95% CI: 0.60, 1.12) for BRAF wild-type patients. The OS HRs for nivolumab vs. chemotherapy were 1.32 (95% CI: 0.75, 2.32) for BRAF mutation-positive patients and 0.83 (95% CI: 0.62, 1.11) for BRAF wild-type patients.

Efficacy by tumour PD-L1 expression: Objective responses to nivolumab were observed regardless of tumour PD-L1 expression. However, the role of this biomarker (tumour PD-L1 expression) has not been fully elucidated.

In patients with tumour PD-L1 expression ≥1%, ORR was 33.5% for nivolumab (n=179; 95% CI: 26.7, 40.9) and 13.5% for chemotherapy (n=74; 95% CI: 6.7, 23.5). In patients with tumour PD-L1 expression <1%, ORR per IRRC was 13.0% (n=69; 95% CI: 6.1, 23.3) and 12.0% (n=25; 95% CI: 2.5, 31.2), respectively.

The PFS HRs for nivolumab vs. chemotherapy were 0.76 (95% CI: 0.54, 1.07) in patients with tumour PD-L1 expression ≥1% and 1.92 (95% CI: 1.05, 3.5) in patients with tumour PD-L1 expression <1%.

The OS HRs for nivolumab vs. chemotherapy were 0.69 (95% CI: 0.49, 0.96) in patients with tumour PD-L1 expression ≥1% and 1.52 (95% CI: 0.89, 2.57) in patients with tumour PD-L1 expression <1%.

These subgroup analyses should be interpreted with caution given the small size of the subgroups and lack of statistically significant difference in OS in the all randomised population.

Open-label phase 1 dose-escalation study (MDX1106-03)

The safety and tolerability of nivolumab were investigated in a phase 1, open-label dose-escalation study in various tumour types, including malignant melanoma. Of the 306 previously treated patients enrolled in the study, 107 had melanoma and received nivolumab at a dose of 0.1 mg/kg, 0.3 mg/kg, 1 mg/kg, 3 mg/kg, or 10 mg/kg for a maximum of 2 years. In this patient population, objective response was reported in 33 patients (31%) with a median duration of response of 22.9 months (95% CI: 17.0, NR). The median PFS was 3.7 months (95% CI: 1.9, 9.3). The median OS was 17.3 months (95% CI: 12.5, 37.8), and the estimated OS rates were 42% (95% CI: 32, 51) at 3 years, 35% (95% CI: 26, 44) at 4 years, and 34% (95% CI: 25, 43) at 5 years (minimum follow-up of 45 months).

Randomised phase 3 study of nivolumab in combination with ipilimumab or nivolumab as monotherapy vs. ipilimumab as monotherapy (CA209067)

The safety and efficacy of nivolumab in combination with ipilimumab or nivolumab vs. ipilimumab monotherapy for the treatment of advanced (unresectable or metastatic) melanoma were evaluated in a phase 3, randomised, double-blind study (CA209067). The differences between the two nivolumab-containing groups were evaluated descriptively. The study included adult patients with confirmed unresectable Stage III or Stage IV melanoma. Patients were to have ECOG performance status score of 0 or 1. Patients who had not received prior systemic anticancer therapy for unresectable or metastatic melanoma were enrolled. Prior adjuvant or neoadjuvant therapy was allowed if it was completed at least 6 weeks prior to randomisation. Patients with active autoimmune disease, ocular/uveal melanoma, or active brain or leptomeningeal metastases were excluded from the study.

A total of 945 patients were randomised to receive nivolumab in combination with ipilimumab (n = 314), nivolumab monotherapy (n = 316), or ipilimumab monotherapy (n = 315). Patients in the combination arm received nivolumab 1 mg/kg over 60 minutes and ipilimumab 3 mg/kg over 90 minutes administered intravenously every 3 weeks for the first 4 doses, followed by nivolumab 3 mg/kg as monotherapy every 2 weeks. Patients in the nivolumab monotherapy arm received nivolumab 3 mg/kg every 2 weeks. Patients in the comparator arm received ipilimumab 3 mg/kg and nivolumab-matched placebo intravenously every 3 weeks for 4 doses followed by placebo every 2 weeks. Randomisation was stratified by PD-L1 expression (≥ 5% vs. < 5% tumour cell membrane expression), BRAF status, and M stage per the American Joint Committee on Cancer (AJCC) staging system. Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. Tumour assessments were conducted 12 weeks after randomisation then every 6 weeks for the first year, and every 12 weeks thereafter. The co-primary outcome measures were progression-free survival and OS. ORR and the duration of response were also assessed.

Baseline characteristics were balanced across the three treatment groups. The median age was 61 years (range: 18 to 90 years), 65% of patients were men, and 97% were white. ECOG performance status score was 0 (73%) or 1 (27%). The majority of the patients had AJCC Stage IV disease (93%); 58% had M1c disease at study entry. Twenty-two percent of patients had received prior adjuvant therapy. Thirty-two percent of patients had BRAF mutation-positive melanoma; 26.5% of patients had PD-L1 ≥ 5% tumour cell membrane expression. Four percent of patients had a history of brain metastasis, and 36% of patients had a baseline LDH level greater than ULN at study entry. Among patients with quantifiable tumour PD-L1 expression, the distribution of patients was balanced across the three treatment groups. Tumour PD-L1 expression was determined using the PD-L1 IHC 28-8 pharmDx assay.

PFS results (with minimum follow up of 18 months) are shown in Figure 2 (all randomised population), Figure 3 (at the tumour PD-L1 5% cut off), and Figure 4 (at the tumour PD-L1 1% cut off).

Figure 2: Progression-free survival (CA209067)

Figure 3: Progression-free survival by PD-L1 expression: 5% cut off (CA209067)

PD-L1 expression < 5%

PD-L1 expression ≥ 5%

Figure 4: Progression-free survival by PD-L1 expression: 1% cut off (CA209067)

PD-L1 expression < 1%

PD-L1 expression ≥ 1%

The final OS analysis occurred when all patients had a minimum follow-up of 28 months. OS results at an additional analysis undertaken at a minimum follow-up of 36 months show outcomes consistent with the original analysis. OS results from this follow-up analysis are shown in Figure 5 (all randomised), Figure 6 (at the tumour PD-L1 1% cut off), and Table 5 (at the tumour PD-L1 5% cut off).

The OS analysis was not adjusted to account for subsequent therapies received. Subsequent systemic therapy was received by 31.8%, 44.3%, and 62.2% of patients in the combination, nivolumab monotherapy, and ipilimumab arms, respectively. Subsequent immunotherapy (including anti-PD1 therapy, anti-CTLA-4 antibody, or other immunotherapy) was received by 14.6%, 29.1%, and 44.1% of patients in the combination, nivolumab monotherapy, and ipilimumab arms, respectively.

Figure 5 Overall survival (CA209067) - Minimum follow-up of 36 months

Figure 6: Overall survival by PD-L1 expression: 1% cut off (CA209067) - Minimum follow-up of 36 months

PD-L1 expression < 1%

PD-L1 expression ≥ 1%

Table 5: Summary of overall survival by PD-L1 expression: 5% cut off - CA209067 - Minimum follow-up of 36 months

Tumour

PD-L1 expression

n

nivolumab + ipilimumab

Median OS (95% CI)

n

ipilimumab

Median OS (95% CI)

Hazard Ratio

(95% CI)

<5%

210

NR (32.72, NR)

202

18.40 (13.70, 22.51)

0.56 (0.43, 0.72)

≥5%

68

NR (39.06, NR)

75

28.88 (18.10, NR)

0.59 (0.36, 0.97)

nivolumab

Median OS (95% CI)

ipilimumab

Median OS (95% CI)

Hazard Ratio

(95% CI)

<5%

208

35.94 (23.06, NR)

202

18.40 (13.70, 22.51)

0.68 (0.53, 0.87)

≥5%

80

NR (35.75, NR)

75

28.88 (18.10, NR)

0.60 (0.38, 0.95)

nivolumab + ipilimumab

Median OS (95% CI)

nivolumab

Median OS (95% CI)

Hazard Ratio

(95% CI)

<5%

210

NR (32.72, NR)

208

35.94 (23.06, NR)

0.82 (0.62, 1.08)

≥5%

68

NR (39.06, NR)

80

NR (35.75, NR)

0.99 (0.59, 1.67)

NR = not reached

Minimum follow-up for the analysis of ORR was 28 months. Responses are summarised in Table 6.

Table 6: Objective response (CA209067)

nivolumab + ipilimumab

(n=314)

nivolumab

(n=316)

ipilimumab

(n=315)

Objective response

185 (59%)

141 (45%)

60 (19%)

(95% CI)

(53.3, 64.4)

(39.1, 50.3)

(14.9, 23.8)

Odds ratio (vs. ipilimumab)

6.50

3.54

(99.5% CI)

(3.81, 11.08.)

(2.10, 5.95)

Complete response (CR)

54 (17%)

47 (15%)

14 (4%)

Partial response (PR)

131 (42%)

94 (30%)

46 (15%)

Stable disease (SD)

36 (12%)

31 (10%)

67 (21%)

Duration of response

Median (range), months

Not reached

(0+ - 33.3+)

31.1 (0+ - 32.3+)

18.2 (0+ - 31.5+)

Proportion ≥12 months in duration

64%

70%

53%

Proportion ≥24 months in duration

50%

49%

32%

ORR (95% CI) by tumour PD-L1 expression

<5%

56% (49.2, 63.0)

n=210

42% (35.5, 49.3)

n=208

18% (12.8, 23.8)

n=202

≥5%

74% (61.4, 83.5)

n=68

59% (47.2, 69.6)

n=80

21% (12.7, 32.3)

n=75

<1%

55% (45.2, 63.5)

n=123

35% (26.5, 44.4)

n=117

19% (11.9, 27.0)

n=113

≥1%

65% (57.1, 72.6)

n=155

55% (47.2, 62.6)

n=171

19% (13.2, 25.7)

n=164

“+” denotes a censored observation.

Both nivolumab-containing arms demonstrated a significant PFS and OS benefit and greater ORR compared with ipilimumab alone. The observed PFS results at 18 months of follow-up and ORR and OS results at 28 months of follow-up were consistently demonstrated across subgroups of patients including baseline ECOG performance status, BRAF status, M stage, age, history of brain metastases, and baseline LDH level. This observation was maintained with the OS results with a minimum follow-up of 36 months.

Among 128 patients who discontinued nivolumab in combination with ipilimumab due to adverse reaction after 18 months of follow-up, median PFS was 16.7 months (95% CI: 10.2, NA). Among 131 patients who discontinued the combination due to adverse reaction after 28 months of follow-up, the ORR was 71% (93/131) with 20% (26/131) achieving a complete response and median OS was not reached.

Both nivolumab-containing arms demonstrated greater objective response rates than ipilimumab regardless of PD-L1 expression levels. ORRs were higher for the combination of nivolumab and ipilimumab relative to nivolumab monotherapy across tumour PD-L1 expression levels (Table 6) after 28 months of follow-up, with a best overall response of complete response correlating to an improved survival rate.

After 28 months of follow-up, median durations of response for patients with tumour PD-L1 expression level ≥5% were not reached (range: 0+-31.6+) in the combination arm, not reached (range: 2.8-30.6+) in the nivolumab monotherapy arm and not reached (range: 1.4-30.6+) in the ipilimumab arm. At tumour PD-L1 expression <5%, median durations of response were not reached (range: 0+-33.3+) in the combination arm, not reached (range: 0+-32.3+) in the nivolumab monotherapy arm and 18.2 months (range: 0.0+-31.5+) in the ipilimumab monotherapy arm.

No clear cut off for PD-L1 expression can reliably be established when considering the relevant endpoints of tumour response and PFS and OS. Results from exploratory multivariate analyses identified patient and tumour characteristics (ECOG performance status, M stage, baseline LDH, BRAF mutation status, PD-L1 status, and gender) which might contribute to the survival outcome.

Efficacy by BRAF status: After18 months of follow-up, BRAF[V600] mutation-positive and BRAF wild-type patients randomised to nivolumab in combination with ipilimumab had a median PFS of 15.5 months (95% CI: 8.0, NA) and 11.3 months (95% CI: 8.3, 22.2), while those in the nivolumab monotherapy arm had a median PFS of 5.6 months (95% CI: 2.8, 9.3) and 7.1 months (95% CI: 4.9, 14.3), respectively. After 28 months of follow-up, BRAF[V600] mutation-positive and BRAF wild-type patients randomised to nivolumab in combination with ipilimumab had an ORR of 67.6% (95% CI: 57.7, 76.6; n = 102) and 54.7% (95% CI: 47.8, 61.5; n = 212), while those in the nivolumab monotherapy arm had an ORR of 36.7% (95% CI: 27.2, 47.1; n = 98) and 48.2% (95% CI: 41.4, 55.0; n = 218), respectively. After 28 months of follow-up, median OS was not reached in either of the nivolumab containing arms regardless of BRAF status. The OS HRs for nivolumab in combination with ipilimumab vs. nivolumab monotherapy were 0.71 (95% CI: 0.45, 1.13) for BRAF[V600] mutation-positive patients and 0.97 (95% CI: 0.74, 1.28) for BRAF wild-type patients.

Randomised phase 2 study of nivolumab in combination with ipilimumab and ipilimumab (CA209069)

Study CA209069 was a randomised, Phase 2, double-blind study comparing the combination of nivolumab and ipilimumab with ipilimumab alone in 142 patients with advanced (unresectable or metastatic) melanoma with similar inclusion criteria to study CA209067 and the primary analysis in patients with BRAF wild-type melanoma (77% of patients). Investigator assessed ORR was 61% (95% CI: 48.9, 72.4) in the combination arm (n = 72) versus 11% (95% CI: 3.0, 25.4) for the ipilimumab arm (n = 37). The estimated 2 and 3 year OS rates were 68% (95% CI: 56, 78) and 61% (95% CI: 49, 71), respectively, for the combination (n = 73) and 53% (95% CI: 36, 68) and 44% (95% CI: 28, 60), respectively, for ipilimumab (n = 37).

Non-Small Cell Lung Cancer

Squamous NSCLC

Randomised phase 3 study vs. docetaxel (CA209017)

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of advanced or metastatic squamous NSCLC were evaluated in a phase 3, randomised, open-label study (CA209017). The study included patients (18 years or older) who have experienced disease progression during or after one prior platinum doublet-based chemotherapy regimen and an ECOG performance status score of 0 or 1. Patients were enrolled regardless of their tumour PD-L1 status. Patients with active autoimmune disease, symptomatic interstitial lung disease, or active brain metastases were excluded from the study. Patients with treated brain metastases were eligible if neurologically returned to baseline at least 2 weeks prior to enrolment, and either off corticosteroids, or on a stable or decreasing dose of < 10 mg daily prednisone equivalents.

A total of 272 patients were randomised to receive either nivolumab 3 mg/kg (n = 135) administered intravenously over 60 minutes every 2 weeks or docetaxel (n = 137) 75 mg/m2 every 3 weeks. Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. Tumour assessments, according to the RECIST, version 1.1, were conducted 9 weeks after randomisation and continued every 6 weeks thereafter. The primary efficacy outcome measure was OS. Key secondary efficacy outcome measures were investigator-assessed ORR and PFS. In addition, symptom improvement and overall health status were assessed using the Lung Cancer Symptom Score (LCSS) average symptom burden index and the EQ-5D Visual Analogue Scale (EQ-VAS), respectively.

Baseline characteristics were generally balanced between the two groups. The median age was 63 years (range: 39-85) with 44% ≥65 years of age and 11% ≥75 years of age. The majority of patients were white (93%) and male (76%). Thirty-one percent had progressive disease reported as the best response to their most recent prior regimen and 45% received nivolumab within 3 months of completing their most recent prior regimen. Baseline ECOG performance status score was 0 (24%) or 1 (76%).

The Kaplan-Meier curves for OS are shown in Figure 7.

Figure 7: Kaplan-Meier curves of OS (CA209017)

The observed OS benefit was consistently demonstrated across subgroups of patients. Survival benefit was observed regardless of whether patients had tumours that were designated PD-L1 negative or PD-L1 positive (tumour membrane expression cut off of 1%, 5% or 10%). However, the role of this biomarker (tumour PD-L1 expression) has not been fully elucidated. With a minimum of 24.2 months follow-up, OS benefit remains consistently demonstrated across subgroups.

Study CA209017 included a limited number of patients ≥ 75 years (11 in the nivolumab group and 18 in the docetaxel group). Nivolumab showed numerically less effect on OS (HR 1.85; 95% CI: 0.76, 4.51), PFS (HR=1.76; 95%-CI: 0.77, 4.05) and ORR (9.1% vs. 16.7%). Because of the small sample size, no definitive conclusions can be drawn from these data.

Efficacy results are shown in Table 7.

Table 7: Efficacy results (CA209017)

nivolumab

(n = 135)

docetaxel

(n = 137)

Primary analysis

Minimum follow-up: 10.6 months

Overall survival

Events

86 (63.7%)

113 (82.5%)

Hazard ratio

0.59

96.85% CI

(0.43, 0.81)

p-value

0.0002

Median (95% CI) months

9.23 (7.33, 13.27)

6.01 (5.13, 7.33)

Rate (95% CI) at 12 months

42.1 (33.7, 50.3)

23.7 (16.9, 31.1)

Confirmed objective response

27

(20.0%)

12

(8.8%)

(95% CI)

(13.6, 27.7)

(4.6, 14.8)

Odds ratio (95% CI)

2.64 (1.27, 5.49)

p-value

0.0083

Complete response (CR)

1

(0.7%)

0

Partial response (PR)

26

(19.3%)

12

(8.8%)

Stable disease (SD)

39

(28.9%)

47

(34.3%)

Median duration of response

Months (range)

Not reached

(2.9-20.5+)

8.4

(1.4+-15.2+)

Median time to response

Months (range)

2.2

(1.6-11.8)

2.1

(1.8-9.5)

Progression-free survival

Events

105 (77.8%)

122 (89.1%)

Hazard ratio

0.62

95% CI

(0.47, 0.81)

p-value

< 0.0004

Median (95% CI) (months)

3.48 (2.14, 4.86)

2.83 (2.10, 3.52)

Rate (95% CI) at 12 months

20.8 (14.0, 28.4)

6.4 (2.9, 11.8)

Updated analysis

Minimum follow-up: 24.2 months

Overall survivala

Events

110 (81.4%)

128 (93.4%)

Hazard ratio

0.62

95% CI

(0.47, 0.80)

Rate (95% CI) at 24 months

22.9 (16.2, 30.3)

8 (4.3, 13.3)

Confirmed objective response

20.0%

8.8%

(95% CI)

(13.6, 27.7)

(4.6, 14.8)

Median duration of response

Months (range)

25.2 (2.9-30.4)

8.4 (1.4+-18.0+)

Progression-free survival

Rate (95% CI) at 24 months

15.6 (9.7, 22.7)

All patients had either progressed, were censored, or lost to follow-up

a Six patients (4%) randomised to docetaxel crossed over at any time to receive nivolumab treatment.

“+” Denotes a censored observation.

The rate of disease-related symptom improvement, as measured by LCSS, was similar between the nivolumab group (18.5%) and the docetaxel group (21.2%). The average EQ-VAS increased over time for both treatment groups, indicating better overall health status for patients remaining on treatment.

Single-arm phase 2 study (CA209063)

Study CA209063 was a single-arm, open-label study conducted in 117 patients with locally advanced or metastatic squamous NSCLC after two or more lines of therapy; otherwise similar inclusion criteria as study CA209017 were applied. Nivolumab 3 mg/kg showed an overall response rate of 14.5% (95% CI: 8.7,22.2%), a median OS of 8.21 months (95% CI: 6.05,10.9), and a median PFS of 1.87 months (95% CI 1.77,3.15). The PFS was measured by RECIST, version 1.1. The estimated 1-year survival rate was 41%.

Non-squamous NSCLC

Randomised phase 3 study vs. docetaxel (CA209057)

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of advanced or metastatic non-squamous NSCLC were evaluated in a phase 3, randomised, open-label study (CA209057). The study included patients (18 years or older) who have experienced disease progression during or after one prior platinum doublet-based chemotherapy regimen which may have included maintenance therapy and who had an ECOG performance status score of 0 or 1. An additional line of TKI therapy was allowed for patients with known EGFR mutation or ALK translocation. Patients were enrolled regardless of their tumour PD-L1 status. Patients with active autoimmune disease, symptomatic interstitial lung disease, or active brain metastases were excluded from the study. Patients with treated brain metastases were eligible if neurologically returned to baseline at least 2 weeks prior to enrolment, and either off corticosteroids, or on a stable or decreasing dose of < 10 mg daily prednisone equivalents.

A total of 582 patients were randomised to receive either nivolumab 3 mg/kg administered intravenously over 60 minutes every 2 weeks (n = 292) or docetaxel 75 mg/m2 every 3 weeks (n = 290). Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. Tumour assessments were conducted according to the RECIST version 1.1. The primary efficacy outcome measure was OS. Key secondary efficacy outcome measures were investigator-assessed ORR and PFS. Additional prespecified subgroup analyses were conducted to evaluate the efficacy of tumour PD-L1 expression at predefined levels of 1%, 5% and 10%. Assessment according to discrete PD-L1 expression intervals were not included in the prespecified analyses due to the small sample sizes within the intervals.

Pre-study tumour tissue specimens were systematically collected prior to randomisation in order to conduct pre-planned analyses of efficacy according to tumour PD-L1 expression. Tumour PD-L1 expression was determined using the PD-L1 IHC 28-8 pharmDx assay.

The median age was 62 years (range: 21 to 85) with 34% ≥65 years of age and 7% ≥75 years of age. The majority of patients were white (92%) and male (55%). Baseline ECOG performance status was 0 (31%) or 1 (69%). Seventy-nine percent of patients were former/current smokers.

The Kaplan-Meier curves for OS are shown in Figure 8.

Figure 8: Kaplan-Meier curves of OS (CA209057)

The trial demonstrated a statistically significant improvement in OS for patients randomised to nivolumab as compared with docetaxel at the prespecified interim analysis when 413 events were observed (93% of the planned number of events for final analysis). Efficacy results are shown in Table 8.

Table 8: Efficacy results (CA209057)

nivolumab

(n = 292)

docetaxel

(n = 290)

Prespecified interim analysis

Minimum follow-up: 13.2 months

Overall survival

Events

190 (65.1%)

223 (76.9%)

Hazard ratioa

0.73

(95.92% CI)

(0.59, 0.89)

p-valueb

0.0015

Median (95% CI) months

12.19 (9.66, 14.98)

9.36 (8.05, 10.68)

Rate (95% CI) at 12 months

50.5 (44.6, 56.1)

39.0 (33.3, 44.6)

Confirmed objective response

56 (19.2%)

36 (12.4%)

(95% CI)

(14.8, 24.2)

(8.8, 16.8)

Odds ratio (95% CI)

1.68 (1.07, 2.64)

p-value

0.0246

Complete response (CR)

4 (1.4%)

1 (0.3%)

Partial response (PR)

52 (17.8%)

35 (12.1%)

Stable disease (SD)

74 (25.3%)

122 (42.1%)

Median duration of response

Months (range)

17.15 (1.8-22.6+)

5.55 (1.2+-15.2+)

Median time to response

Months (range)

2.10 (1.2-8.6)

2.61 (1.4-6.3)

Progression-free survival

Events

234 (80.1%)

245 (84.5%)

Hazard ratio

0.92

95% CI

(0.77, 1.11)

p-value

0.3932

Median (95% CI) (months)

2.33 (2.17, 3.32)

4.21 (3.45, 4.86)

Rate (95% CI) at 12 months

18.5 (14.1, 23.4)

8.1 (5.1, 12.0)

Updated analysis

Minimum follow-up: 24.2 months

Overall survivalc

Events

228 (78.1%)

247 (85.1%)

Hazard ratioa

0.75

(95% CI)

(0.63, 0.91)

Rate (95% CI) at 24 months

28.7 (23.6, 34.0)

15.8 (11.9, 20.3)

Confirmed objective response

19.2%

12.4%

(95% CI)

(14.8, 24.2)

(8.8, 16.8)

Median duration of response

Months (range)

17.2 (1.8-33.7+)

5.6 (1.2+-16.8)

Progression-free survival

Rate (95% CI) at 24 months

11.9 (8.3, 16.2)

1.0 (0.2, 3.3)

a Derived from a stratified proportional hazards model.

b P-value is derived from a log-rank test stratified by prior maintenance therapy and line of therapy; the corresponding O'Brien-Fleming efficacy boundary significance level is 0.0408.

c Sixteen patients (6%) randomised to docetaxel crossed over at any time to receive nivolumab treatment.

“+” Denotes a censored observation.

Quantifiable tumour PD-L1 expression was measured in 79% of patients in the nivolumab group and 77% of patients in the docetaxel group. Tumour PD-L1 expression levels were balanced between the two treatment groups (nivolumab vs. docetaxel) at each of the predefined tumour PD-L1 expression levels of ≥ 1% (53% vs. 55%), ≥ 5% (41% vs. 38%), or ≥ 10% (37% vs. 35%).

Patients with tumour PD-L1 expression by all predefined expression levels in the nivolumab group demonstrated greater likelihood of improved survival compared to docetaxel, whereas survival was similar to docetaxel in patients with low or no tumour PD-L1 expression. In terms of ORR, increasing PD-L1 expression was associated with larger ORR. Comparable to the overall population, median duration of response was increased with nivolumab vs. docetaxel for patients with no PD-L1 expression (18.3 months vs. 5.6 months) and for patients with PD-L1 expression (16.0 months vs. 5.6 months).

Table 9 summarises results of ORR and OS by tumour PD-L1 expression.

Table 9: ORR and OS by tumour PD-L1 expression (CA209057)

PD-L1 Expression

nivolumab

docetaxel

ORR by tumour PD-L1 expression

Minimum follow-up: 13.2 months

Odds Ratio (95% CI)

< 1%

10/108 (9.3%)

95% CI: 4.5, 16.4

15/101 (14.9%)

95% CI: 8.6, 23.3

0.59 (0.22, 1.48)

≥ 1%

38/123 (30.9%)

95% CI: 22.9, 39.9

15/123 (12.2%)

95% CI: 7.0, 19.3

3.22 (1.60, 6.71)

≥ 1% to < 10%a

6/37 (16.2%)

95% CI: 6.2, 32.0

5/ 44 (11.4%)

95% CI: 3.8, 24.6

1.51 (0.35, 6.85)

≥ 10% to < 50%a

5/20 (25.0%)

95% CI: 8.7, 49.1

7/33 (21.2%)

95% CI: 9.0, 38.9

1.24 (0.26, 5.48)

≥ 50%a

27/66 (40.9%)

95% CI: 29.0, 53.7

3/46 (6.5%)

95% CI: 1.4, 17.9

9.92 (2.68, 54.09)

OS by tumour PD-L1 expression

Minimum follow-up: 13.2 months

Number of events (number of patients)

Unstratified Hazard Ratio (95% CI)

< 1%

77 (108)

75 (101)

0.90 (0.66, 1.24)

≥ 1%

68 (123)

93 (123)

0.59 (0.43, 0.82)

≥ 1% to < 10%a

27 (37)

30 (44)

1.33 (0.79, 2.24)

≥ 10% to < 50%a

11 (20)

26 (33)

0.61 (0.30, 1.23)

≥ 50%a

30 (66)

37 (46)

0.32 (0.20, 0.53)

Updated analysis

Minimum follow-up: 24.2 months

< 1%

91 (108)

86 (101)

0.91 (0.67, 1.22)

≥ 1%

87 (123)

103 (123)

0.62 (0.47, 0.83)

a Post-hoc analysis; results should be interpreted with caution as the subgroup samples sizes are small and, at the time of the analysis, the PD-L1 IHC 28-8 pharmDx assay was not analytically validated at the 10% or 50% expression levels.

A higher proportion of patients experienced death within the first 3 months in the nivolumab arm (59/292, 20.2%) as compared to the docetaxel arm (44/290, 15.2%). Results of a post-hoc, exploratory multivariate analysis indicated that nivolumab-treated patients with poorer prognostic features and/or aggressive disease when combined with lower (e.g., < 50%) or no tumour PD-L1 expression may be at higher risk of death within the first 3 months.

In subgroup analyses, survival benefit compared to docetaxel was not shown for patients who were never-smokers or whose tumours harboured EGFR activating mutations; however, due to the small numbers of patients, no definitive conclusions can be drawn from these data.

Renal Cell Carcinoma

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of advanced RCC with a clear cell component was evaluated in a Phase 3, randomised, open-label study (CA209025). The study included patients (18 years or older) who have experienced disease progression during or after 1 or 2 prior anti-angiogenic therapy regimens and no more than 3 total prior systemic treatment regimens. Patients had to have a Karnofsky Performance Score (KPS) ≥ 70%. This study included patients regardless of their tumour PD-L1 status. Patients with any history of or concurrent brain metastases, prior treatment with an mammalian target of rapamycin (mTOR) inhibitor, active autoimmune disease, or medical conditions requiring systemic immunosuppression were excluded from the study.

A total of 821 patients were randomised to receive either nivolumab 3 mg/kg (n = 410) administered intravenously over 60 minutes every 2 weeks or everolimus (n = 411) 10 mg daily, administered orally. Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. The first tumour assessments were conducted 8 weeks after randomisation and continued every 8 weeks thereafter for the first year and then every 12 weeks until progression or treatment discontinuation, whichever occurred later. Tumour assessments were continued after treatment discontinuation in patients who discontinued treatment for reasons other than progression. Treatment beyond initial investigator-assessed RECIST, version 1.1-defined progression was permitted if the patient had a clinical benefit and was tolerating study drug as determined by the investigator. The primary efficacy outcome measure was OS. Secondary efficacy assessments included investigator-assessed ORR and PFS.

Baseline characteristics were generally balanced between the two groups. The median age was 62 years (range: 18-88) with 40% ≥ 65 years of age and 9% ≥ 75 years of age. The majority of patients were male (75%) and white (88%), all Memorial Sloan Kettering Cancer Center (MSKCC) risk groups were represented, and 34% and 66% of patients had a baseline KPS of 70 to 80% and 90 to 100%, respectively. The majority of patients (72%) were treated with one prior anti-angiogenic therapy. The median duration of time from initial diagnosis to randomisation was 2.6 years in both the nivolumab and everolimus groups. The median duration of treatment was 5.5 months (range: 0- 29.6+ months) in nivolumab-treated patients and was 3.7 months (range: 6 days-25.7+ months) in everolimus-treated patients.

Nivolumab was continued beyond progression in 44% of patients.

The Kaplan-Meier curves for OS are shown in Figure 9.

Figure 9: Kaplan-Meier curves of OS (CA209025)

The trial demonstrated a statistically significant improvement in OS for patients randomised to nivolumab as compared with everolimus at the prespecified interim analysis when 398 events were observed (70% of the planned number of events for final analysis) (Table 10 and Figure 9). OS benefit was observed regardless of tumour PD-L1 expression level.

Efficacy results are shown in Table 10.

Table 10: Efficacy results (CA209025)

nivolumab

(n = 410)

everolimus

(n = 411)

Overall survival

Events

183 (45%)

215 (52%)

Hazard ratio

0.73

98.52% CI

(0.57, 0.93)

p-value

0.0018

Median (95% CI)

25.0 (21.7, NE)

19.6 (17.6, 23.1)

Rate (95% CI)

At 6 months

89.2 (85.7, 91.8)

81.2 (77.0, 84.7)

At 12 months

76.0 (71.5, 79.9)

66.7 (61.8, 71.0)

Objective response

103

(25.1%)

22

(5.4%)

(95% CI)

(21.0, 29.6)

(3.4, 8.0)

Odds ratio (95% CI)

5.98 (3.68, 9.72)

p-value

< 0.0001

Complete response (CR)

4

(1.0%)

2

(0.5%)

Partial response (PR)

99

(24.1%)

20

(4.9%)

Stable disease (SD)

141

(34.4%)

227

(55.2%)

Median duration of response

Months (range)

11.99

(0.0-27.6+)

11.99

(0.0+-22.2+)

Median time to response

Months (range)

3.5

(1.4-24.8)

3.7

(1.5-11.2)

Progression-free survival

Events

318 (77.6%)

322 (78.3%)

Hazard ratio

0.88

95% CI

(0.75, 1.03)

p-value

0.1135

Median (95% CI)

4.6 (3.71, 5.39)

4.4 (3.71, 5.52)

“+” denotes a censored observation.

NE = non-estimable

The median time to onset of objective response was 3.5 months (range: 1.4-24.8 months) after the start of nivolumab treatment. Fourty-nine (47.6%) responders had ongoing responses with a duration ranging from 0.0-27.6+ months.

Overall survival could be accompanied by an improvement over time in disease related symptoms and non-disease specific quality of life (QoL) as assessed using valid and reliable scales in the Functional Assessment of Cancer Therapy-Kidney Symptom Index-Disease Related Symptoms (FKSI-DRS) and the EuroQoL EQ-5D. Apparently meaningful symptom improvement (MID = 2 point change in FKSI-DRS score; p < 0.001) and time to improvement (HR = 1.66 (1.33,2.08), p < 0.001) were significantly better for patients on the nivolumab arm. While both arms of the study received active therapy, the QoL data should be interpreted in the context of the open-label study design and therefore cautiously taken.

Classical Hodgkin Lymphoma

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of relapsed or refractory cHL following ASCT was evaluated in two multi-centre, open-label, single-arm studies (CA209205 and CA209039).

CA209205 is an ongoing Phase 2, open-label, multi-cohort, single-arm study of nivolumab in cHL. It includes 243 patients who had ASCT; Cohort A included 63 (26%) patients who were brentuximab vedotin naïve; Cohort B included 80 (33%) patients who had received brentuximab vedotin after ASCT failure; and Cohort C included 100 (41%) patients who had received brentuximab vedotin before and/or after ASCT out of which 33 (14%) patients received brentuximab vedotin only prior to ASCT. All patients received nivolumab 3 mg/kg monotherapy intravenously over 60 minutes every 2 weeks. The first tumour assessments were conducted 9 weeks after the start of treatment and continued thereafter until disease progression or treatment discontinuation. The primary efficacy outcome measure was ORR as determined by an IRRC. Additional efficacy measures included duration of response, PFS and OS.

CA209039 is a Phase 1b open-label, multi-centre, dose-escalation, and multidose study of nivolumab in relapsed/refractory hematologic malignancies, including 23 patients with cHL treated with nivolumab 3 mg/kg monotherapy; amongst which, 15 patients received prior brentuximab vedotin treatment as a salvage therapy following ASCT, similar to Cohort B of study CA209205. The first tumour assessments were conducted 4 weeks after the start of treatment and continued thereafter until disease progression or treatment discontinuation. Efficacy assessments included investigator-assessed ORR, retrospectively evaluated by an IRRC, and duration of response.

Data from the 80 patients from CA209205 Cohort B and from the 15 patients from CA209039 who received prior brentuximab vedotin treatment following ASCT were integrated. Additional data from 100 patients from CA209205 Cohort C who received brentuximab before and/or after ASCT are also presented. Baseline characteristics were similar across the two studies and cohorts (see Table 11 below).

Table 11: Baseline patient characteristics in CA209205 Cohort B, Cohort C and CA209039

CA209205 Cohort B and CA209039

CA209205 Cohort Ba

CA209039

CA209205 Cohort Cb

(n = 95)

(n = 80)

(n = 15)

(n = 100)

Median age, years (range)

37.0 (18–72)

37.0 (18–72)

40.0 (24–54)

32.0 (19-69)

Gender

61 (64%) M

34 (36%) F

51 (64%) M

29 (36%) F

10 (67%) M

5 (33%) F

56 (56%) M

44 (44%) F

ECOG status

0

49 (52%)

42 (52.5%)

7 (47%)

50 (50%)

1

46 (48%)

38 (47.5%)

8 (53%)

50 (50%)

≥ 5 prior lines of systemic therapy

49 (52%)

39 (49%)

10 (67%)

30 (30%)

Prior radiation therapy

72 (76%)

59 (74%)

13 (87%)

69 (69%)

Prior ASCT

1

87 (92%)

74 (92.5%)

13 (87%)

100 (100%)

≥ 2

8 (8%)

6 (7.5%)

2 (13%)

0 (0%)

Years from most recent transplant to first dose of study therapy, median (min-max)

3.5 (0.2–19.0)

3.4 (0.2–19.0)

5.6 (0.5–15.0)

1.7 (0.2-17.0)

a 18/80 (22.5%) of the patients in CA209205 Cohort B presented B-Symptoms at baseline.

b 25/100 (25%) of the patients in CA209205 Cohort C presented B-Symptoms at baseline.

Efficacy from both studies was evaluated by the same IRRC. Results are shown in Table 12.

Table 12: Efficacy results in patients with relapsed/refractory classical Hodgkin lymphoma

CA209205 Cohort Ba and CA209039

CA209205 Cohort Ba

CA209039

Number (n)/ minimum follow-up (months)

(n = 95/12.0)

(n = 80/12.0)

(n = 15/12.0)

Objective response, n (%); (95% CI)

63 (66%); (56, 76)

54 (68%); (56, 78)

9 (60%); (32, 84)

Complete remission (CR), n (%); (95% CI)

6 (6%); (2, 13)

6 (8%); (3, 16)

0 (0%); (0, 22)

Partial remission (PR), n (%); (95% CI)

57 (60%); (49, 70)

48 (60%); (48, 71)

9 (60%); (32, 84)

Stable disease, n (%)

22 (23)

17 (21)

5 (33)

Duration of response (months)b

Median (95% CI)

13.1 (9.5, NE)

13.1 (8.7, NE)

12.0 (1.8, NE)

Range

0.0+-23.1+

0.0+-14.2+

1.8-23.1+

Median time to response

Months (range)

2.0 (0.7-11.1)

2.1 (1.6-11.1)

0.8 (0.7-4.1)

Median duration of follow-up

Months (range)

15.8 (1.9-27.6)

15.4 (1.9-18.5)

21.9 (11.2-27.6)

Progression-free survival

Rate (95% CI) at 12 months

57 (45, 68)

55 (41, 66)

69 (37, 88)

“+” denotes a censored observation.

a Follow-up was ongoing at the time of data submission.

b Data unstable due to the limited duration of response for Cohort B resulting from censoring.

NE = non-estimable

Longer follow-up data from Cohort B (minimum 20.5 months) and efficacy of Cohort C from CA209205 are presented below in Table 13.

Table 13: Updated efficacy results in patients with relapsed/refractory classical Hodgkin lymphoma from longer follow up of study CA209205

CA209205 Cohort Ba

CA209205 Cohort Ca

Number (n)/ minimum follow-up (months)

(n = 80/20.5)

(n = 100/13.7)b

Objective response, n (%); (95% CI)

54 (68%); (56, 78)

73 (73%); (63, 81)

Complete remission (CR), n (%); (95% CI)

10 (13%); (6, 22)

12 (12%); (6, 20)

Partial remission (PR), n (%); (95% CI)

44 (55%); (44, 66)

61 (61%); (51, 71)

Stable disease, n (%)

17 (21)

15 (15%)

Duration of response in all responders (months)c

Median (95% CI)

15.9 (7.8, 20.3)

14.5 (9.5, 16.6)

Range

0.0+-21.0+

(0.0+, 16.8+)

Duration of response in CR (months)

Median (95% CI)

20.3 (3.8, NE)

14.5 (8.2, NE)

Range

1.6+-21.0+

(0.0+, 16.5+)

Duration of response in PR (months)

Median (95% CI)

10.6 (6.8, 18.0)

13.2 (9.4, 16.6)

Range

0.0+-20.7+

(0.0+, 16.8+)

Median time to response

Months (range)

2.2 (1.6-9.1)

2.1 (0.8, 8.6)

Median duration of follow-up

Months (range)

22.7 (1.9-27.2)

16.2 (1.4, 20.4)

Progression- free survival

Rate (95% CI) at 12 months

51 (38, 62)

49 (37, 60)

Rate (95% CI) at 18 months

47 (35, 59)

Overall survival

Median

Not reached

Not reached

Rate (95% CI) at 12 months

95 (87, 98)

90 (82, 94)

Rate (95% CI) at 18 months

91 (82, 96)

“+” denotes a censored observation.

a Follow-up was ongoing at the time of data submission.

b Patients in Cohort C (n = 33) who have received brentuximab vedotin only prior to ASCT had ORR of 70% (95% CI: 51, 84), CR of 15% (95% CI: 5, 32), PR of 55% (95% CI: 36, 72). Median duration of response was 13.2 months (95% CI: 8.2, NE)

c Determined for subjects with CR or PR

NE = non-estimable

B-symptoms were present in 22% (53/243) of the patients in CA209205 at baseline. Nivolumab treatment resulted in rapid resolution of B-symptoms in 88.7% (47/53) of the patients, with a median time to resolution of 1.9 months.

In a post-hoc analysis of the 80 patients in CA209205 Cohort B, 37 had no response to prior brentuximab vedotin treatment. Among these 37 patients, treatment with nivolumab resulted in an ORR of 59.5% (22/37). The median duration of response is 18.0 months (6.6, NE) for the 22 responders to nivolumab who had failed to achieve response with prior brentuximab vedotin treatment.

Squamous Cell Cancer of the Head and Neck

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of metastatic or recurrent SCCHN were evaluated in a phase 3, randomised, open-label study (CA209141). The study included patients (18 years or older) who have experienced disease progression during or within 6 months of receiving platinum-based therapy regimen and had an ECOG performance status score of 0 or 1. Prior platinum-based therapy was administered in either the adjuvant, neo-adjuvant, primary, recurrent, or metastatic setting. Patients were enrolled regardless of their tumour PD-L1 or human papilloma virus (HPV) status. Patients with active autoimmune disease, medical conditions requiring immunosuppression, recurrent or metastatic carcinoma of the nasopharynx, squamous cell carcinoma of unknown primary, salivary gland or non-squamous histologies (e.g., mucosal melanoma), or active brain or leptomeningeal metastases were excluded from the study. Patients with treated brain metastases were eligible if neurologically returned to baseline at least 2 weeks prior to enrolment, and either off corticosteroids, or on a stable or decreasing dose of < 10 mg daily prednisone equivalents.

A total of 361 patients were randomised to receive either nivolumab 3 mg/kg (n = 240) administered intravenously over 60 minutes every 2 weeks or investigator's choice of either cetuximab (n = 15), 400 mg/m2 loading dose followed by 250 mg/m2 weekly or methotrexate (n = 52) 40 to 60 mg/m2 weekly, or docetaxel (n = 54) 30 to 40 mg/m2 weekly. Randomisation was stratified by prior cetuximab treatment. Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. Tumour assessments, according to RECIST version 1.1, were conducted 9 weeks after randomisation and continued every 6 weeks thereafter. Treatment beyond initial investigator-assessed RECIST version 1.1-defined progression was permitted in patients receiving nivolumab, if the patient had a clinical benefit and was tolerating study drug, as determined by the investigator. The primary efficacy outcome measure was OS. Key secondary efficacy outcome measures were investigator-assessed PFS and ORR. Additional prespecified subgroup analyses were conducted to evaluate the efficacy by tumour PD-L1 expression at predefined levels of 1%, 5%, and 10%.

Pre-study tumour tissue specimens were systematically collected prior to randomisation in order to conduct pre-planned analyses of efficacy according to tumour PD-L1 expression. Tumour PD-L1 expression was determined using the PD-L1 IHC 28-8 pharmDx assay.

Baseline characteristics were generally balanced between the two groups. The median age was 60 years (range: 28-83) with 31% ≥ 65 years of age and 5% ≥ 75 years of age, 83% were male, and 83% were white. Baseline ECOG performance status score was 0 (20%) or 1 (78%), 77% were former/current smokers, 90% had Stage IV disease, 66% had two or more lesions, 45%, 34% and 20% received 1, 2, or 3 or more prior lines of systemic therapy, respectively, and 25% were HPV-16 status positive.

With a minimum follow-up of 11.4 months, the trial demonstrated a statistically significant improvement in OS for patients randomised to nivolumab as compared with investigator's choice. The Kaplan-Meier curves for OS are shown in Figure 10. Efficacy results are shown in Table 14.

Figure 10: Kaplan-Meier curves of OS (CA209141)

Table 14: Efficacy results (CA209141)

nivolumab

(n = 240)

investigator's choice

(n = 121)

Overall survival

Events

184 (76.7%)

105 (86.8%)

Hazard ratioa

0.71

(95% CI)

(0.55, 0.90)

p-valueb

0.0048

Median (95% CI) (months)

7.72 (5.68, 8.77)

5.06 (4.04, 6.24)

Rate (95% CI) at 6 months

56.5 (49.9, 62.5)

43.0 (34.0, 51.7)

Rate (95% CI) at 12 months

34.0 (28.0, 40.1)

19.7 (13.0, 27.3)

Rate (95% CI) at 18 months

21.5 (16.2, 27.4)

8.3 (3.6, 15.7)

Progression-free survival

Events

204 (85.0%)

104 (86.0%)

Hazard ratio

0.87

95% CI

(0.69, 1.11)

p-value

0.2597

Median (95% CI) (months)

2.04 (1.91, 2.14)

2.33 (1.97, 3.12)

Rate (95% CI) at 6 months

21.0 (15.9, 26.6)

11.1 (5.9, 18.3)

Rate (95% CI) at 12 months

9.5 (6.0, 13.9)

2.5 (0.5, 7.8)

Confirmed objective responsec

32 (13.3%)

7 (5.8%)

(95% CI)

(9.3, 18.3)

(2.4, 11.6)

Odds ratio (95% CI)

2.49 (1.07, 5.82)

Complete response (CR)

6 (2.5%)

1 (0.8%)

Partial response (PR)

26 (10.8%)

6 (5.0%)

Stable disease (SD)

55 (22.9%)

43 (35.5%)

Median time to response

Months (range)

2.1 (1.8-7.4)

2.0 (1.9-4.6)

Median duration of response

Months (range)

9.7 (2.8-20.3+)

4.0 (1.5+-8.5+)

a Derived from a stratified proportional hazards model.

b P-value is derived from a log-rank test stratified by prior cetuximab; the corresponding O'Brien-Fleming efficacy boundary significance level is 0.0227.

c In the nivolumab group there were two patients with CRs and seven patients with PRs who had tumour PD-L1 expression < 1%.

Quantifiable tumour PD-L1 expression was measured in 67% of patients in the nivolumab group and 82% of patients in the investigator's choice group. Tumour PD-L1 expression levels were balanced between the two treatment groups (nivolumab vs. investigator's choice) at each of the predefined tumour PD-L1 expression levels of ≥ 1% (55% vs. 62%), ≥ 5% (34% vs. 43%), or ≥ 10% (27% vs. 34%).

Patients with tumour PD-L1 expression by all predefined expression levels in the nivolumab group demonstrated greater likelihood of improved survival compared to investigator's choice. The magnitude of OS benefit was consistent for ≥ 1%, ≥ 5% or ≥ 10% tumour PD-L1 expression levels (see Table 15).

Table 15: OS by tumour PD-L1 expression (CA209141)

PD-L1 Expression

nivolumab

investigator's choice

OS by tumour PD-L1 expression

Number of events (number of patients)

Unstratified Hazard Ratio (95% CI)

< 1%

56 (73)

32 (38)

0.83 (0.54, 1.29)

≥ 1%

66 (88)

55 (61)

0.53 (0.37, 0.77)

≥ 5%

39 (54)

40 (43)

0.51 (0.32, 0.80)

≥ 10%

30 (43)

31 (34)

0.57 (0.34, 0.95)

In an exploratory post-hoc analysis using a non-validated assay, both tumour cell PD-L1 expression and tumour-associated immune cell (TAIC) PD-L1 expression were analysed in relation to the magnitude of treatment effect of nivolumab compared to investigator's choice. This analysis showed that not only tumour cell PD-L1 expression but also TAIC PD-L1 expression appeared to be associated with benefit from nivolumab relative to investigator's choice (see Table 16). Due to the small numbers of patients in the subgroups, and exploratory nature of the analysis, no definitive conclusions can be drawn from these data.

Table 16: Efficacy by tumour cell and TAIC PD-L1 expression (CA209141)

Median OSa (months)

Median PFSa (months)

ORR (%)

HRb (95% CI)

HRb (95% CI)

(95% CI)c

nivolumab

investigator's choice

nivolumab

investigator's choice

nivolumab

investigator's choice

PD-L1 ≥ 1%, PD-L1+ TAIC abundantd

(61 nivolumab, 47 investigator's choice)

9.10

4.60

3.19

1.97

19.7

0

0.43 (0.28, 0.67)

0.48 (0.31, 0.75)

(10.6, 31.8)

(0, 7.5)

PD-L1 ≥ 1%, PD-L1+ TAIC rared

(27 nivolumab, 14 investigator's choice)

6.67

4.93

1.99

2.04

11.1

7.1

0.89 (0.44, 1.80)

0.93 (0.46, 1.88)

(2.4, 29.2)

(0.2, 33.9)

PD-L1 < 1%, PD-L1+ TAIC abundantd

(43 nivolumab, 25 investigator's choice)

11.73

6.51

2.10

2.73

18.6

12.0

0.67 (0.38, 1.18)

0.96 (0.55, 1.67)

(8.4, 33.4)

(2.5, 31.2)

PD-L1 < 1%, PD-L1+ TAIC rared

(27 nivolumab, 10 investigator's choice)

3.71

4.85

1.84

2.12

3.7

10.0

1.09 (0.50, 2.36)

1.91 (0.84, 4.36)

(< 0.1, 19.0)

(0.3, 44.5)

a OS and PFS were estimated using Kaplan-Meier method.

b Hazard ratio in each subgroup derived from a Cox proportional hazards model with treatment as the only covariate.

c Confidence interval for ORR calculated using the Clopper-Pearson method.

d PD-L1+ TAIC in the tumour microenvironment were qualitatively assessed, and characterised as “numerous”, “intermediate”, and “rare” based on pathologist assessments. “Numerous” and “intermediate” groups were combined to define the “abundant” group.

Patients with investigator-assessed primary site of oropharyngeal cancer were tested for HPV (determined by p16 immunohistochemistry [IHC]). OS benefit was observed regardless of HPV status (HPV-positive: HR = 0.63; 95% CI: 0.38, 1.04, HPV-negative: HR = 0.64; 95% CI: 0.40, 1.03, and HPV-unknown: HR = 0.78; 95% CI: 0.55, 1.10).

Patient-reported outcomes (PROs) were assessed using the EORTC QLQ-C30, EORTC QLQ-H&N35, and 3-level EQ-5D. Over 15 weeks of follow-up, patients treated with nivolumab exhibited stable PROs, while those assigned to investigator's choice therapy exhibited significant declines in functioning (e.g., physical, role, social) and health status as well as increased symptomatology (e.g., fatigue, dyspnoea, appetite loss, pain, sensory problems, social contact problems). The PRO data should be interpreted in the context of the open-label study design and therefore taken cautiously.

Urothelial Carcinoma

Open-label phase 2 study (CA209275)

The safety and efficacy of nivolumab 3 mg/kg as a single agent for the treatment of patients with locally advanced or metastatic urothelial carcinoma was evaluated in a phase 2, multicentre, open-label, single-arm study (CA209275).

The study included patients (18 years or older) who had disease progression during or following platinum-containing chemotherapy for advanced or metastatic disease or had disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. Patients had an ECOG performance status score of 0 or 1 and were enrolled regardless of their tumour PD-L1 status. Patients with active brain metastases or leptomeningeal metastases, active autoimmune disease, or medical conditions requiring systemic immunosuppression were excluded from the study. Patients that received more than 2 prior lines of chemotherapy with liver metastases were excluded.

A total of 270 patients who received nivolumab 3 mg/kg administered intravenously over 60 minutes every 2 weeks with a minimum follow-up of 8.3 months were evaluable for efficacy. Treatment was continued as long as clinical benefit was observed or until treatment was no longer tolerated. The first tumour assessments were conducted 8 weeks after the start of treatment and continued every 8 weeks thereafter up to 48 weeks, then every 12 weeks until disease progression or treatment discontinuation, whichever occurred later. Tumour assessments were continued after treatment discontinuation in patients who discontinued treatment for reasons other than progression. Treatment beyond initial investigator-assessed RECIST, version 1.1-defined progression was permitted if the patient had a clinical benefit, did not have rapid disease progression, and was tolerating study drug as determined by the investigator. The primary efficacy outcome measure was ORR as determined by BICR (Blinded Independent Central Review). Additional efficacy measures included duration of response, PFS and OS.

The median age was 66 years (range: 38 to 90) with 55% ≥65 years of age and 14% ≥75 years of age. The majority of patients were white (86%) and male (78%). Baseline ECOG performance status was 0 (54%) or 1 (46%).

Table 17: Efficacy results (CA209275)a

nivolumab

(n = 270)

Confirmed objective response

54 (20.0%)

(95% CI)

(15.4, 25.3)

Complete response (CR)

8 (3.0%)

Partial response (PR)

46 (17.0%)

Stable disease (SD)

60 (22.2%)

Median duration of responseb

Months (range)

10.4 (1.9+-12.0+)

Median time to response

Months (range)

1.9 (1.6, 7.2)

Progression Free Survival

Events (%)

216 (80%)

Median (95% CI) months

2.0 (1.9, 2.6)

Rate (95% CI) at 6 months

26.1 (20.9, 31.5)

Overall survivalc

Events (%)

154 (57%)

Median (95% CI) months

8.6 (6.05, 11.27)

Rate (95% CI) at 12 months

41.0 (34.8, 47.1)

Tumour PD-L1 expression level

< 1%

≥ 1%

Confirmed objective response

(95% CI)

16% (10.3, 22.7)

n=146

25% (17.7, 33.6)

n=124

Median duration of response

Months (range)

10.4 (3.7, 12.0+)

Not Reached (1.9+, 12.0+)

Progression-free survival

Median (95% CI) months

1.9 (1.8, 2.0)

3.6 (1.9, 3.7)

Rate (95% CI) at 6 months

22.0 (15.6, 29.2)

30.8 (22.7, 39.3)

Overall survival

Median (95% CI) months

5.9 (4.37, 8.08)

11.6 (9.10, NE)

Rate (95% CI) at 12 months

34.0 (26.1, 42.1)

49.2 (39.6, 58.1)

“+” denotes a censored observation.

a median follow-up 11.5 months.

b Data unstable due to the limited duration of response.

c included 4 drug-related deaths: 1 pneumonitis, 1 acute respiratory failure, 1 respiratory failure, and 1 cardiovascular failure.

NE: non-estimable

Results from post-hoc, exploratory analyses indicate that in patients with low (e.g. <1%) to no tumour PD-L1 expression, other patient characteristics (e.g. liver metastases, visceral metastases, baseline haemoglobin <10g/dL and ECOG performance status = 1) might contribute to the clinical outcome.

Open-label phase 1/2 study (CA209032)

CA209032 was a Phase 1/2 open-label multi-cohort study which included a cohort of 78 patients (including 18 subjects who received planned crossover treatment with nivolumab 3 mg/kg plus ipilimumab 1 mg/kg combination) with similar inclusion criteria to study CA209275 treated with nivolumab monotherapy 3 mg/kg for urothelial carcinoma. At a minimum follow-up of 9 months, investigator-assessed confirmed ORR was 24.4% (95% CI: 15.3, 35.4). The median duration of response was not reached (range: 4.4-16.6+ months). The median OS was 9.7 months (95% CI:7.26, 16.16) and the estimated OS rates were 69.2% (CI: 57.7, 78.2) at 6 months and 45.6% (CI: 34.2, 56.3) at 12 months.

Safety and efficacy in elderly patients

No overall differences in safety or efficacy were reported between elderly (≥ 65 years) and younger patients (< 65 years). Data from NSCLC and SCCHN patients 75 years of age or older are too limited to draw conclusions on this population. Data from cHL patients 65 years of age or older are too limited to draw conclusions on this population.

Paediatric population

The European Medicines Agency has deferred the obligation to submit the results of studies with nivolumab in all subsets of the paediatric population in the treatment of malignant solid tumours, malignant neoplasms of lymphoid tissue and malignant neoplasms of the central nervous system (see section 4.2 for information on paediatric use).


Go to top of the page
5.2 Pharmacokinetic properties

The pharmacokinetics (PK) of nivolumab is linear in the dose range of 0.1 to 10 mg/kg. The geometric mean clearance (CL), terminal half-life, and average exposure at steady state at 3 mg/kg every 2 weeks of nivolumab were 7.9 mL/h, 25.0 days, and 86.6 μg/mL, respectively, based on a population PK analysis.

Nivolumab CL increased with increasing body weight. Body weight normalised dosing produced approximately uniform steady-state trough concentration over a wide range of body weights (34-162 kg).

The metabolic pathway of nivolumab has not been characterised. Nivolumab is expected to be degraded into small peptides and amino acids via catabolic pathways in the same manner as endogenous IgG.

Nivolumab in combination with ipilimumab: When nivolumab 1 mg/kg was administered in combination with ipilimumab 3 mg/kg, the CL of nivolumab was increased by 29%. There was no effect of nivolumab on the CL of ipilimumab.

When administered in combination, the CL of nivolumab increased by 24% in the presence of anti-nivolumab antibodies. There was no effect of anti-ipilimumab antibodies on the CL of ipilimumab.

Special populations

A population PK analysis suggested no difference in CL of nivolumab based on age, gender, race, solid tumour type, tumour size, and hepatic impairment. Although ECOG status, baseline glomerular filtration rate (GFR), albumin, body weight, and mild hepatic impairment had an effect on nivolumab CL, the effect was not clinically meaningful. Nivolumab CL in cHL patients was approximately 32% lower relative to NSCLC. With available safety data, this decrease in CL was not clinically meaningful.

Renal impairment

The effect of renal impairment on the CL of nivolumab was evaluated in patients with mild (GFR < 90 and ≥ 60 mL/min/1.73 m2; n = 379), moderate (GFR < 60 and ≥ 30 mL/min/1.73 m2; n = 179), or severe (GFR < 30 and ≥ 15 mL/min/1.73 m2; n = 2) renal impairment compared to patients with normal renal function (GFR ≥ 90 mL/min/1.73 m2; n = 342) in population PK analyses. No clinically important differences in the CL of nivolumab were found between patients with mild or moderate renal impairment and patients with normal renal function. Data from patients with severe renal impairment are too limited to draw conclusions on this population (see section 4.2).

Hepatic impairment

The effect of hepatic impairment on the CL of nivolumab was evaluated in patients with mild hepatic impairment (total bilirubin 1.0 × to 1.5 × ULN or AST > ULN as defined using the National Cancer Institute criteria of hepatic dysfunction; n = 92) compared to patients with normal hepatic function (total bilirubin and AST ≤ ULN; n = 804) in the population PK analyses. No clinically important differences in the CL of nivolumab were found between patients with mild hepatic impairment and normal hepatic function. Nivolumab has not been studied in patients with moderate (total bilirubin > 1.5 × to 3 × ULN and any AST) or severe hepatic impairment (total bilirubin > 3 × ULN and any AST) (see section 4.2).


Go to top of the page
5.3 Preclinical safety data

Blockade of PD-L1 signalling has been shown in murine models of pregnancy to disrupt tolerance to the foetus and to increase foetal loss. The effects of nivolumab on prenatal and postnatal development were evaluated in monkeys that received nivolumab twice weekly from the onset of organogenesis in the first trimester through delivery, at exposure levels either 8 or 35 times higher than those observed at the clinical dose of 3 mg/kg of nivolumab (based on AUC). There was a dose-dependent increase in foetal losses and increased neonatal mortality beginning in the third trimester.

The remaining offspring of nivolumab-treated females survived to scheduled termination, with no treatment-related clinical signs, alterations to normal development, organ-weight effects, or gross and microscopic pathology changes. Results for growth indices, as well as teratogenic, neurobehavioral, immunological, and clinical pathology parameters throughout the 6-month postnatal period were comparable to the control group. However, based on its mechanism of action, foetal exposure to nivolumab may increase the risk of developing immune-related disorders or altering the normal immune response and immune-related disorders have been reported in PD-1 knockout mice.

Fertility studies have not been performed with nivolumab.


Go to top of the page
6. PHARMACEUTICAL PARTICULARS

Go to top of the page
6.1 List of excipient(s)

Sodium citrate dihydrate

Sodium chloride

Mannitol (E421)

Pentetic acid (diethylenetriaminepentaacetic acid)

Polysorbate 80

Sodium hydroxide (for pH adjustment)

Hydrochloric acid (for pH adjustment)

Water for injections


Go to top of the page
6.2 Incompatibilities

In the absence of compatibility studies, this medicinal product must not be mixed with other medicinal products. OPDIVO should not be infused concomitantly in the same intravenous line with other medicinal products.


Go to top of the page
6.3 Shelf life

Unopened vial

2 years.

After opening

From a microbiological point of view, once opened, the medicinal product should be infused or diluted and infused immediately.

After preparation of infusion

From a microbiological point of view, the product should be used immediately.

If not used immediately, chemical and physical in-use stability of OPDIVO has been demonstrated for 24 hours at 2°C to 8°C protected from light and a maximum of 8 hours at 20°C-25°C and room light (this 8-hour period of the total 24 hours should be inclusive of the product administration period).


Go to top of the page
6.4 Special precautions for storage

Store in a refrigerator (2°C-8°C).

Do not freeze.

Store in the original package in order to protect from light.

For storage conditions after preparation of the infusion, see section 6.3.


Go to top of the page
6.5 Nature and contents of container

4 mL of concentrate in a 10 mL vial (Type I glass) with a stopper (coated butyl rubber) and a dark blue flip-off seal (aluminium). Pack size of 1 vial.

10 mL of concentrate in a 10 mL vial (Type I glass) with a stopper (coated butyl rubber) and a grey flip-off seal (aluminium). Pack size of 1 vial.

Not all pack sizes may be marketed.


Go to top of the page
6.6 Special precautions for disposal and other handling

Preparation should be performed by trained personnel in accordance with good practices rules, especially with respect to asepsis.

Preparation and administration

Calculating the dose

The prescribed dose for the patient is given in mg/kg. Based on this prescribed dose, calculate the total dose to be given. More than one vial of OPDIVO concentrate may be needed to give the total dose for the patient.

The total nivolumab dose in mg = the patient's weight in kg × the prescribed dose in mg/kg.

The volume of OPDIVO concentrate to prepare the dose (mL) = the total dose in mg, divided by 10 (the OPDIVO concentrate strength is 10 mg/mL).

Preparing the infusion

Take care to ensure aseptic handling when you prepare the infusion.

OPDIVO can be used for intravenous administration either:

without dilution, after transfer to an infusion container using an appropriate sterile syringe; or

after diluting to concentrations as low as 1 mg/mL. The final infusion concentration should range between 1 and 10 mg/mL. OPDIVO concentrate may be diluted with either:

sodium chloride 9 mg/mL (0.9%) solution for injection; or

50 mg/mL (5%) glucose solution for injection.

STEP 1

Inspect the OPDIVO concentrate for particulate matter or discoloration. Do not shake the vial. OPDIVO concentrate is a clear to opalescent, colourless to pale yellow liquid. Discard the vial if the solution is cloudy, is discoloured, or contains particulate matter other than a few translucent-to-white particles.

Withdraw the required volume of OPDIVO concentrate using an appropriate sterile syringe.

STEP 2

Transfer the concentrate into a sterile, evacuated glass bottle or intravenous container (PVC or polyolefin).

If applicable, dilute with the required volume of sodium chloride 9 mg/mL (0.9%) solution for injection or 50 mg/mL (5%) glucose solution for injection. For ease of preparation, the concentrate can also be transferred directly into a pre-filled bag containing the appropriate volume of sodium chloride 9 mg/mL (0.9%) solution for injection or 50 mg/mL (5%) glucose solution for injection.

Gently mix the infusion by manual rotation. Do not shake.

Administration

OPDIVO infusion must not be administered as an intravenous push or bolus injection.

Administer the OPDIVO infusion intravenously over a period of 60 minutes.

OPDIVO infusion should not be infused at the same time in the same intravenous line with other agents. Use a separate infusion line for the infusion.

Use an infusion set and an in-line, sterile, non-pyrogenic, low protein binding filter (pore size of 0.2 μm to 1.2 μm).

OPDIVO infusion is compatible with PVC and polyolefin containers, glass bottles, PVC infusion sets and in-line filters with polyethersulfone membranes with pore sizes of 0.2 µm to 1.2 µm.

After administration of the nivolumab dose, flush the line with sodium chloride 9 mg/mL (0.9%) solution for injection or 50 mg/mL (5%) glucose solution for injection.

Disposal

Do not store any unused portion of the infusion solution for reuse. Any unused medicinal product or waste material should be disposed of in accordance with local requirements.


Go to top of the page
7. MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharma EEIG

Uxbridge Business Park

Sanderson Road

Uxbridge UB8 1DH

United Kingdom


Go to top of the page
8. MARKETING AUTHORISATION NUMBER(S)

EU/1/15/1014/001-002


Go to top of the page
9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 19 June 2015


Go to top of the page
10. DATE OF REVISION OF THE TEXT

9th November 2017

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu



Link to this document from your website:
http://www.medicines.ie/medicine/16374/SPC/OPDIVO+10+mg+mL+concentrate+for+solution+for+infusion/

Document Links

 
  Link to this page
  View all medicines
from this company
Print this page
View document history
Bookmark and Share

Active Ingredients

 
   Nivolumab